شبیه سازی تاثیر تغییر اقلیم بر رشد ذرت و بررسی امکان تخفیف اثر منفی آن با تغییر تاریخ کاشت در مغان

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار پژوهش، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

برنامه­ریزی مناسب و تعیین راه­­کارهای افزایش سازگاری گیاهان زراعی به تغییر احتمالی اقلیم، نیازمند شناخت دقیق روند رفتار عوامل اقلیمی و نحوه پاسخ گیاهان زراعی به این تغییرات است. بدین­منظور، مطالعه حاضر با هدف شبیه­سازی آثار تغییر اقلیمبر مراحل فنولوژیک و عملکرد دانه ذرت هیبرید سینگل کراس 647 و بررسی امکان تعدیل آثار منفی تغییر اقلیم بر تولید ذرت با تغییر تاریخ کاشت به­عنوان یک راه­کار مدیریتی در منطقه مغان انجام گرفت. برای شبیه­سازی پارامترهای اقلیمی و ایجاد فصل رشد احتمالی برای سه دوره زمانی 2025، 2055 و 2085 تحت دو مدل گردش عمومیHadCM3 وIPCM4با سه سناریویA1B،B1وA2 از مدل مولد اقلیم LARS-WG و برای شبیه­سازی رشد ذرت از مدلAquaCropاستفاده شد. نتایج ارزیابی مدل LARS-WG نشان داد که این مدل پارامترهای اقلیمی و فصل رشد احتمالی را به­طور مناسب شبیه­سازی کرد. نتایج شبیه­سازی رشد ذرت با مدل AquaCropنیز مشخص کرد که طول دوره کاشت تا سبزشدن و گل­دهی، طول دوره پرشدن دانه و طول دوره رسیدگی فیزیولوژیک ذرت تحت تاثیر تغییر اقلیم در بیشتر سناریوهای مورد استفاده کاهش یافت. هم­چنین عملکرد ذرت تحت تاثیر تغییر اقلیم طی سه دوره آینده، از 4/4 تا 30درصد نسبت به شرایط کنونی کاهش می­یابد. به­منظور کاهش اثر منفی تغییر اقلیم از استراتژی تغییر کاشت استفاده و نتایج شبیه­سازی نشان داد که در سال 2025، کاشت ذرت در حوالی26 فروردین (زودتر از تاریخ کاشت کنونی یعنیدهه سوم اردیبهشت) باعث تولید عملکرد بالاتری نسبت به سایر تاریخ­های کاشت (11 فروردین و 10 اردیبهشت) و در سال­های 2055 و 2085 تاریخ­های کاشت 11 و 26 فروردیندر شرایط تغییر اقلیم مناسب­تر خواهند بود. بر اساس نتایج این تحقیق، به­نظر می­رسد کهبتوان از استراتژی مدیریت تاریخ کاشت به­عنوان یک راه­کار مناسب برای تعدیل آثار منفی تغییر اقلیم بر عملکرد ذرت استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

The mitigation of climate change effect on maize grain yield by changing of planting date in Moghan

نویسنده [English]

  • Mohammadreza Shiri
Research Assist. Prof., Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Appropriate planning and making strategies to increase crop adaptation to possible future climate change requires a good understanding of the trend of climate factors and response of the crops to climate changes. Therefore, this study was conducted tosimulate the climate change effects on phenological stages and grainyield of maize hybrid SC 647 and to explore the possibility of employing planting dates asmitigating options to decrease the climate change impacts on maize production in Moghan region, Ardabil, Iran. LARS-WG model wasused to simulate the climatic parameters as one stochastic growing season under two types of General Circulation Models ((UnitedKingdom Met. Office Hadley Center: HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1) for three periods including 2025, 2055 and 2085. Aqua crop model was used to simulate maize growth. The results of modelevaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions. The simulation of phenological stages by AquaCrop model showed that the period from planting to emergence and flowering, grain filling period and maturity were reduced in majority of scenarios under climatechange. The results indicated that the grain yield of maize may be reduced 4.4% to 30% as affected by climate change based on common planting date in baseline. In order to reduce the negative impact of climate change, the strategy of changing planting date was used. The results of simulation showed that earlier planting date near 15 April (earlier than the current planting date, the second ten days of May) caused higher yield compared with other planting dates (30 April and 31 March) in 2025. In 2055 and 2085, However, the planting date of 31 March and 15 April in terms of climate change will be more appropriate. It seems thatmanagement of planting dates can be regarded as appropriate approach to reduce adverse effects of climate change on the grain yield of maize.

کلیدواژه‌ها [English]

  • Climate scenarios
  • AquaCropModel
  • LARS-WG Model
Abumhadi, N., Todorovska, E., Assenov B., Tsonev, S., Vulcheva, D., Vulchev, D., Atanasova, L., Savova, S. and Atanassov A.2012. Agricultural Research in 21st century: Challenges facing the food security under the impacts of climate change. Bulgarian Journal of Agricultural Science 18: 801-818.##Alexandrov, V.A. and Hoogenboom, G. 2000. The impact of climate variability and change crop yield in Bulgaria. Agriculture and Forest Meteorology 104: 315-327.##Cuculeanu, V., Marica, A. and Simota, C. 1999. Climate change impact on agricultural crops and adaptation options in Romania. Climate Research 12: 153-160.##FAOSTAT.2014. Food and Agriculture Organization Statistics. Avilable at: http://www.FAO.org. Accessed in June 2015.##IPCC, 2007. Summary for policy makers. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report. Cambridge University Press, Cambridge.##Kapetanaki, G. and Rosenzweig, C. 1997. Impact of climate change on maize yield in central and northern Greece: A simulation study with Ceres-maize. Mitigation and Adaptation Strategies for Global Change 1: 251-271.##Koocheki, A. and Kamali, G.H. 2010. Climate change and rainfed wheat production in Iran. Iranian Journal of Field Crops Research 8: 508-520. (In Persian with English Abstract).##Koocheki, A., Nassiri,  M.G., Kamali, A. and Shahandeh, H. 2006. Potential impacts of climate change on agro-meteorological indicators in Iran. Arid Land Research and Management 20: 245-259.##Leemans, R. and Solomon, A. M. 1993. Modeling the potential change in yield and distribution of the earth's crops under a warmed climate. Climate Research 3: 79-96.##Li, X., Takahashi, T.,Suzuki,N. and Kaiser,H.M. 2011. The impact of climate change on maize yields in the United States and China. Agricultural Systems 104: 348-353.##Mera, R.J., Niyogi, D., Buol, G.S., Wilkerson, G.G. and Semazzi, F.H.M. 2006. Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change 54: 163-182.##Meza, F.J., Silva, D. and Vigil, H. 2008. Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems 98: 21-30.##Mitchell, J.F.B., John, T.C., Gregory, J.M. and Tett, S. 1995. Climate response to increasing levels of greenhouse gases as sulphate aerosols. Nature 376: 501-504.##Moradi, R., Koochaki, A. and Mahallati, M.N. 2014. Effect of climate change on maize production and shifting of planting date as adaptation strategy in mashhad. Journal of Sustainable Agriculture and Production Science 23 (4): 111-130. (In Persian with English Abstract).##Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvag, A.O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J. and Micale, F. 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34:96-112.##Prudhomme, C., Wilby,  R.L., Crooks, S., Kay, A.L. and Reynard, N.S. 2010. Scenario-neutral approach to climate change impact studies: Application to flood risk. Journal of Hydrology 390:198-209.##Raes, D., Steduto P., Hsiao, T.C. and Fereres, E. 2012. Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.##Rahimikhoob, H., Sotoodehnia, A. and Massahbavani, A.R. 2014.Calibration and evaluation of aquacrop for maize in Qazvin region. Iranian Journal of lrrigation and Drainage 8: 108-115. (In Persian with English Abstract).##Rosenzweig, C. and Tubiello, F.N. 2007. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change 12: 855-873.##Ruiz-Ramos, M. and Minguez, M.I. 2010. Evaluating uncertainty in climate change impacts on crop productivity in the IberianPeninsula. Climate Research 44: 69-82.##Semenov, M.A., Brooks, R.J., Barro, E.M. and Richardson, C.W. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators in divers climates. Climate Research 10: 95-107.##Semenov, M.K. and Stratonovitch, A. 2010. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research 41: 1-14.##Singh, A.K., Tripathy, R. and Chopra, U.K. 2008. Evaluation of CERES-Wheat and CropSyst modelsforwater nitrogeninteractionsinwheatcrop.AgriculturalWaterManagement95:776-786.##Smit, B. and Skinner, M.W. 2002. Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation Strategies for Global Change 7: 85-114.##Southworth, J., Randolph, J.C., Habeck, M., Doering, O.C., Pfeifer, R.A., Rao, D.G. and Johnston, J.J. 2000. Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agriculture, Ecosystems and Environment 82: 139-158.##Trnka, M., Dubrovsky, M. and Ekzalud, Z. 2004. Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change 64: 227-255.##Wetterhall, F., Bardossy, A., Chen, D., Halldin, S. and Ch, X.U. 2009. Statistical downscaling of daily precipitation over Sweden using GCM output. Theoretical and Applied Climatology 96: 95-103.##Ziaee, Gh., Babazadeh, H., Abbasi, F. and Kaveh, F. 2015. Evaluation of the AquaCrop and CERES-Maize models in assessment of soil water balance and maize yield. Iranian Journal of Soil and Water Research 45:435-445. (In Persian with English Abstract).