تأثیر پرایم کردن بذر در مزرعه و کنترل علف‌های هرز بر صفات سبز شدن، برخی شاخص‌های رشد، عملکرد زیستی و عملکرد دانه در دانه‌ای مزار کراس ۳۰۱ در همدان

اکرم مهیدیزاده، احمدعلی ابوطالبیان ۳، جواد حمزهی ۳ و گودرز احمدوند۲

۲ و ۳ به ترتیب دانشجوی کارشناسی ارشد، استادیاران و دانشیار گروه زراعت و اصلاح نباتات دانشگاه بูلهٔ سیتا

(تاریخ دریافت: ۱۳۸۹/۱۲/۰۷ - پذیرش: ۱۳۹۰/۱۲/۰۷) چکیده

به منظور بررسی اثر پرایم کردن کردن مزرعه‌ای بذر و کنترل علف‌های هرز بر برخی صفات در دانه‌ای مزار کراس ۳۰۱، آزمایشی به صورت کاملاً جدید در گلاب‌خیار گل مزیت旋转 در سال ۱۳۸۹ انجام گرفت. عملیات مورد استفاده شامل پرایم کردن بذر در مزرعه در چهار سطح (پرایم نشده، پرایم با محلول اوره، پرایم با محلول سولفات روی و پرایم با آب معنی‌دار) و عامل علف‌های هرز در سه سطح (بدون واجین، واجین در ژوپر در ۰ روز بعد از کاشت و واجین در ۳۰ روز بعد از کاشت) مورد بررسی قرار گرفتند. برای پرایم‌ها در مزرعه، به‌سرعت ۱۶ ساعت در محلول‌های اوره (۶ گرم در لیتر)، سولفات روی و غلظت روی ۲۴ درصد (۵) گرم در لیتر) و آب معنی‌دار قرار داده شد و پس از خشک شدن سطح، کاشته شدند. نتایج نشان داد تیمارهای پرایم شده با محلول‌های اوره و روی بالاترین سرعت سبز شدن و کمترین زمان تا ۵۰ درصد سبز شدن (E50) را داشتند و تیمار محلول اوره بیشترین پیشرفت را به خود اختصاص داد. همچنین تیمار پرایم با محلول اوره بالاترین میزان انرژی سبز شدن را نشان داد. تیمارهای پرایم روی به محلول‌های سولفات روی و اوره به‌سرعت بالاترین سرعت رشد گیاه (۲۱/۱۴ و ۲۱/۸۹/۱۹ و ۲/۰۵ گرم در متر مربع در زمان و همانندی وزن خشک کل (0/۰۸/۶/۷۶ و ۱/۸۰ گرم در متر مربع) داشتند. دوام سطح برگ در نتیجه تأثیر پرایم‌های قرار نگرفت، اما با کنترل علف‌های هرز در یک و دو بار کنترل به ترتیب ۲۲ و ۲/۳ درصد افزایش یافت. تیمار اوره با یک بار کنترل علف‌های هرز بیشترین عملکرد زیستی را داشت که با تیمار اوره و دو بار یک بار کنترل تفاوت نداشت. تیمارهای اوره و سولفات روی به ترتیب افزایش ۱۴ و ۱۲ درصدی عملکرد دانه را نسبت به شاهد نشان دادند. آب با دو بار کنترل بالاترین شاخص برداشت را داشت که با تیمار روی دو بار کنترل تفاوت معنی‌داری نداشت. در مجموع نتایج این آزمایش نشان داد که پرایم کردن بذر با محلول‌های اوره و سولفات روی باعث افزایش سرعت و نواز سبزی و گیاه‌های هرزی ۳۰۱ درد شد. تأثیر کنترل علف‌های هرز بر شاخص‌های رشد مواد مغذی، عملکرد زیستی و عملکرد دانه در ترکیب با پرایم‌های بذر افزایش یافت.

واژه‌های کلیدی: اثر زیر سبز شدن، سطح برگ، سرعت رشد گیاه، سرعت سبز شدن

aboutalebian@yahoo.com

نویسنده مسئول: *
شرو عیش نوشته مواد غذایی لازم برای رشد جنین می‌باشد. بنابراین بحث اینکه عمل جوانه زنی از سر گرفته می‌شود، مواد غذایی تجهیز جنین در اختیار جنین در حال رشد قرار گرفته و رشد جنین با سرعت بیشتری انجام می‌گیرد.

گیاه‌های حاصل از بذر به‌طور عادی در جنگ آماده و املاح از حاک موفق تر عمل کرده و به همین دلیل می‌تواند به عنوان هزارانی تسهیل جداره و از این نظر را به عنوان یک رویکرد جهانی غذایی و از سوی مصرفکنندگان باعث افزایش عامل برای افزایش عملکرد استفاده دنی (2010). (Manarifar, 2010) از این دیدگاه می‌تواند به عنوان یک رویکرد مناسب برای کاهش سود و هزینه‌ها سازمان‌های کشاورزی و روستایی در خانواده امروزی استفاده شود. (Emam, 2007) سپس شدن نتایج خرسنگی در جنگ لای در محدوده 5 تا 36 درصد کاهش داد. در سنین این علل‌های در مرحله جهاده نتایج بررسی خود می‌تواند به عنوان یک رویکرد موفق گردد.

Knezevic et al., (1995) (on-farm seed priming) بذر در مزرعه تيپستی که به‌طور سیستمی آن بر هوا گرفته دقیق یک گیاهان حاصل از بذر برای استفاده در برنامه‌های موجود در استان کاملاً مناسب می‌باشد. به‌طور قبل ملاحظاتی که در پی این امر، گسترش اشکوب گیاهی در مزرعه حاصل از کاشت بذر به‌طور می‌تواند به عنوان یک رویکرد مناسب برای کاهش سود و هزینه‌های پردازش بذر در برنامه‌های موجود باشد. (Duman, 2006) حاصل از بذر به‌طور می‌تواند به عنوان یک رویکرد مناسب برای کاهش سود و هزینه‌های پردازش بذر در برنامه‌های موجود باشد. (Welch, 1986) هر سال و همکاران (2002) (Harris) گزارش کرده‌اند که استفاده از بذر به‌طور می‌تواند به عنوان یک رویکرد مناسب برای خروج از روزه برای صورت کاهش حاکی گزارش کرده‌اند که استفاده از بذر به‌طور می‌تواند به عنوان یک رویکرد مناسب برای خروج از روزه برای صورت کاهش حاکی.
شاهد بیشتر بود. بذرهاي پرایم شده کلزا نسبت به بذر شاهد از شاخص سطح بروک و در نتیجه تجمع ماده خشک (Faghiih Nabi et al., 2010) بازماندی پروروندند. تحقیق عمیق‌گیری از تیمار پرایم‌ها در نتیجه توسط هرولوگی (Harris et al., 2002) گزارش شد. هرولوگی و همکاران (Harris et al., 2002) گزارش نمودند که پرایم با عنصر معنی‌دار مثل روز باعث افزایش ویژگی‌های ارزنده‌تر شده، البته این که دوچرخه از عقله‌های هرز رشد می‌کنند در قاب‌های عقله‌های هرز، در نتیجه تاکیدی می‌کنند.

مواد و روش‌ها

به منظور بررسی اثر پرایم کردن بذر در مزرعه و کنترل عقله‌های هرز بر خصوصیات سبز شدن، شاخص سطح بروک، دوام شاخص سطح بروک، سرعت رشد گیاه، وزن شکر در مرحله مثبت و عملکرد زیستی در دیگر مراحل پرورشی و کنترل عقله‌های هرز بر خصوصیات سبز شدن بذر و اثر منفی برایم و کنترل عقله‌های هرز، در کرانک ۳۰۱ و برنامه است.

در این راستا، به ترتیب تعداد بذرها سبز شده و شماره روز زمان کاشت در شماره بات‌های درست‌نموده، از آنچه را در این پرورش داده و پس از شکل‌دادن تزریق شدند. عقله‌های هرز (Amaranthus retroflexus L.) و (Chenopodium album L.). سلسله نهایی (Setaria viridis L.) باواریتی عرضی (1) سرعت بذر شدن

\[\text{سرعت بزرگ‌شدن} = \frac{\text{نری}}{\text{نری}} + \frac{\text{نری}}{\text{نری}} \]

در این راستا، با ترتیب تعداد بذرها سبز شده و شماره روز زمان کاشت در شماره بات‌های درست‌نموده، از آنچه را در این پرورش داده و پس از شکل‌دادن تزریق شدند. عقله‌های هرز (Amaranthus retroflexus L.) و (Chenopodium album L.). سلسله نهایی (Setaria viridis L.) باواریتی عرضی (1) سرعت بذر شدن

\[\text{سرعت بزرگ‌شدن} = \frac{\text{نری}}{\text{نری}} + \frac{\text{نری}}{\text{نری}} \]

در این راستا، با ترتیب تعداد بذرها سبز شده و شماره روز زمان کاشت در شماره بات‌های درست‌نموده، از آنچه را در این پرورش داده و پس از شکل‌دادن تزریق شدند. عقله‌های هرز (Amaranthus retroflexus L.) و (Chenopodium album L.). سلسله نهایی (Setaria viridis L.) باواریتی عرضی (1) سرعت بذر شدن

\[\text{سرعت بزرگ‌شدن} = \frac{\text{نری}}{\text{نری}} + \frac{\text{نری}}{\text{نری}} \]

در این راستا، با ترتیب تعداد بذرها سبز شده و شماره روز زمان کاشت در شماره بات‌های درست‌نموده، از آنچه را در این پرورش داده و پس از شکل‌دادن تزریق شدند. عقله‌های هرز (Amaranthus retroflexus L.) و (Chenopodium album L.). سلسله نهایی (Setaria viridis L.) باواریتی عرضی (1) سرعت بذر شدن

\[\text{سرعت بزرگ‌شدن} = \frac{\text{نری}}{\text{نری}} + \frac{\text{نری}}{\text{نری}} \]
تعادل بذور سیز شده در اولین شمارش، ن‌i، تعداد تجمعی بذر سیز شده در آخرین شمارش است.

\[E_{50} = t_{i} + \frac{(N/2-n_{i})(t_{j}-t_{i})}{n_{j}-n_{i}} \]

در رابطه بالا، \(t_{i} \) به روز سیز، \(t_{j} \) به احتمالات روز سیز، \(N \) تعداد تعداد تعداد نهایی سیز شده در آخرین روز، \(n_{i} \) روز شمارش، \(n_{j} \) آخرین روز شمارش است.

تعادل بذور سیز شده در شمارش آخر

\[EI = \frac{\text{تعداد بذور سیز شده در شمارش اول}}{\text{تعداد بذور سیز شده در شمارش اول}} + \ldots + \frac{\text{تعداد بذور سیز شده در شمارش آخر}}{\text{تعداد بذور سیز شده در شمارش آخر}} \]

و برای مقایسه میانگین‌ها از آزمون چند دامنه EXCEL دانکن در سطح احتمال 0.05 درصد استفاده شد.

نتایج و بحث

خصومات سیز شدن سرعت و درصد بذر: اثر پرایم کردن بذر در دو صفت در سطح احتمال 0.01 درصد معنی‌دار شد (جدول 1). نیمارهای پراهم شده با محلول اوره و روت بالابری سرعت سیز شدت یافتن (جدول 1) و تیمار محلول اوره بیشترین درصد سیز شدت را جویانه تجربه کرد. پرایم شده می‌تواند ناشی از افزایش فعالیت آنزیم‌های تجزیه انرژی (ADP) از طریق کننده‌های مثل الافا آمیلاز، افزایش سطح انرژی زیستی و DNA.RNA. قالب افزایش مقدار ATP، افزایش سطح LAD و افزایش تعداد و حجم حلال عملکرد میکروکاردی‌ها Guzman (Afzal et al., 2002: گزارش‌ها و ان. اول و Olave, 2006) گزارش کرد که پرایم کردن بذر با محلول‌های تیترات سرعت جوانه‌زدایی را افزایش داد. افزایش سرعت جوانه‌زدایی در بذرها غلظت در اثر پرایمینگ گزارش شده است (Harris et al., 2002, 2001). همچنین افزودن استفاده از عنصر تیترورن بذر پرایم کردن بذرها باعث تقویت پنجه گیاهی که حامل شده است، نتیجه گرفت که نتیجه‌های خوبی در نتیجه، سرعت رشد کیاه a, b, c, a', b', c' و سرعت رشد کیاه t1 و t2 رشد نا 8 بگیری، ها ضرایب تعادلات رگرسیونی x روز پس از کشت شاخص برداشت با استفاده از رابطه زیر به دست آمد:

\[HI = EY/BY \times 100 \]

در زمان رسیدگی فیزیولوژیکی، با برداشت 2 متر مربع از رنگ‌دهی داخیه خر زیر رشته دستی و با احساس نیم متر حساسیتی از بالا و پایین کردن ما، عملکرد زیستی و عملکرد ناه به دست آمد. انزیم آنزیمی از کشت A نداده بودن آنها با استفاده از هم‌افزارهای و SAS انجام شد. جهت ضمیمه می‌تواند از برنامه MSTAT-C.
<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Time taken 50%</th>
<th>Emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rate</td>
<td>percentage</td>
<td>energy</td>
<td>index</td>
<td>emergence</td>
<td>index</td>
</tr>
<tr>
<td>Replication</td>
<td>2</td>
<td>0.00005</td>
<td>2.33**</td>
<td>0.008**</td>
<td>0.018**</td>
<td>0.028**</td>
</tr>
<tr>
<td>Priming</td>
<td>3</td>
<td>0.0017**</td>
<td>361.06**</td>
<td>150.26**</td>
<td>1.15**</td>
<td>0.43**</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>0.00006</td>
<td>0.92</td>
<td>0.39</td>
<td>0.004</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Priming

5.98 1.58 3.03 1.07 5.77

NS Non significant

Significant at 1% level of probability.

Table 1. Analysis of variance for traits associated with the emergence of maize (SC301)

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rate</td>
<td>percentage</td>
<td>energy</td>
<td>index</td>
<td>time</td>
<td>index</td>
</tr>
<tr>
<td>Replication</td>
<td>2</td>
<td>0.052**</td>
<td>66.28**</td>
<td>28358.92**</td>
<td>751.62**</td>
<td>14932.94**</td>
</tr>
<tr>
<td>Priming</td>
<td>3</td>
<td>0.058**</td>
<td>67.51**</td>
<td>148546.95**</td>
<td>1709.10**</td>
<td>11007588.64**</td>
</tr>
<tr>
<td>Weed control</td>
<td>2</td>
<td>0.08**</td>
<td>107.53**</td>
<td>186691.14**</td>
<td>5699.11*</td>
<td>12967564.33**</td>
</tr>
<tr>
<td>(P×WC)</td>
<td>6</td>
<td>0.5**</td>
<td>23.84**</td>
<td>22321.15**</td>
<td>627.34**</td>
<td>409132.85**</td>
</tr>
<tr>
<td>Error</td>
<td>22</td>
<td>0.34</td>
<td>12.85</td>
<td>5156.71</td>
<td>1378.13</td>
<td>43026.5</td>
</tr>
</tbody>
</table>

5.59 19.65 9.20 19.71 1.44 2.83 3.60

Table 2. Analysis of variance for traits associated with the emergence of maize (SC301)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
<th>Emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.11c</td>
<td>49.5a</td>
<td>14.04a</td>
<td>6.43a</td>
<td>3.83b</td>
<td>16.57b</td>
</tr>
<tr>
<td>P2</td>
<td>0.15a</td>
<td>73.1a</td>
<td>17.91c</td>
<td>5.82b</td>
<td>4.31b</td>
<td>18.99b</td>
</tr>
<tr>
<td>P3</td>
<td>0.16a</td>
<td>66.5b</td>
<td>30.59a</td>
<td>5.12c</td>
<td>3.51b</td>
<td>21.76b</td>
</tr>
<tr>
<td>P4</td>
<td>0.13b</td>
<td>53.7c</td>
<td>20.21b</td>
<td>5.81b</td>
<td>3.50b</td>
<td>15.63b</td>
</tr>
</tbody>
</table>

P1, P2, P3 and P4 non priming, priming with urea, zinc and water, respectively. Similar letters in each column indicate no significant difference at 5% level of probability.
مهدی‌زاده و همکاران: تأثیر پرایم کردن بذر و کنترل عفونی‌گاه هرز در صفوف ذرت داتائی

انرژی سیز شدن (EE)؛ زمان تا ۵۰ درصد سیز

شدن (E50) و شاخص سیز شدن (E1)؛ در صفحه سخته

اندازه‌گیری شده از سیز شدن بذرها در آزمایشگاه

معنی‌دار بود. با توجه به جدول ۳، یک پرایم کردن

بعزیز تأثیر قابل توجهی بر انرژی سیز شدن داشت، به

طوریکه کنترل انرژی سیز شدن مرتب بود این تیم

بود. بیشترین زمانی که سرعت سیز شدن ۵۰ درصد بذرها

درشت در تیمار شاهد بود (جدول ۳)، با توجه به این که

همچنین گزارش گردید که پرایمیکی به‌کار رفته در

گروه از کنترل عفونی‌گاه زیر کنترل عفونی‌گاه داد. یک سرعت رشد درصد ۲۸ درصد و دوباره

کنترل عفونی‌گاه داد. بین سرعت رشد گیاه و مقدار

نابش جدب شده توسط پرایمیکی یک گیاه رابطه مستقیم

وجود دارد. به طوری که در ابتدا و انتهای فصل رشد به

دیل کامل نیتروپنوسی گیاهی و کمبود سطح دریافت

کنترل ناپذیری (برگ) تولید ماده خشک کمتر شده و مقدار

سرعت رشد گیاه هم که بود اما رشد سریع گیاه و

افزایش سطح بزرگ، جذب تغییر و سرعت رشد گیاه افزایش

یافته (شکل ۲)،

۳- وزن خشک کل در یک وسیله سطح (TDW)؛ اثرات

ساده پرایمیک و کنترل عفونی‌گاه هرز و بر هم کننده پرایم در

کنترل عفونی‌گاه هرز در حداکثر وزن خشک کل در سطح

احتمال یک درصد معنی‌دار بود (جدول ۳). در جدول ۵

مشاهده شد که تیمار پرایم با محلول سولفات روی

و یک یا ۲ کنترل عفونی‌گاه هر ۱۵/۸۷ ۸۰/۸۶ می‌باشد (می‌باشد)

مستقیم (برگ) با محلول سولفات روی و پرایم با محلول سولفات روی و

پرایم با محلول سولفات روی و دو بار کنترل عفونی‌گاه هرز

۸۰/۸۶ (۱۵/۸۶ درصد) با اثرات پرایمکن دارند و

کنترل در بذرها گندم با نتایج مناسب پاسخ افزایش

سطح بزرگ شد. شکل ۱ بانگر این ایست از کنترل

(Imported).
دانشگاه کیهان تهران، 1391
بحث‌الغایت سال دوم شماره اول

در سطح احتمال یک رده‌بندی معنی‌دار شدن (جدول ۳) تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی نداشت. بعد از آن، تیمار سوم وقت روی یک یا دو بار کنترل قرار گرفت که با تیمار‌های روی و دوربین کنترل دو بار یک یا دو بار کنترل تفاوتی نداشت (جدول ۴). در مطلق، تیمار اوره با یک یا دو بار کنترل عف‌های بي‌پروتئینی عملکرد زیستی داشت که با تیمار اوره و دو بار کنترل تفاوتی Nadašt (2002)
شاخص‌های رشد و عملکرد زیستی در تریدری سبزیجات با شرایط آزمایش حاضر شود.

جدول 4- مقایسه میانگین اثر کنترل عنفیه‌های حشرات در سرعت رشد و دوام شاخ و سطح بذر سبزیجات کریس 2001 Table 4. Mean comparison of weed control on maximum crop growth rate and leaf area duration of maize (SC301)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>دوام سطح بذر</th>
<th>جاداکتر سرعت رشد کیفی</th>
<th>CGRmax</th>
<th>LAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>15.35a</td>
<td>163.8a</td>
<td>33.72a</td>
<td>196.3a</td>
</tr>
<tr>
<td>W2</td>
<td>21.45a</td>
<td>199.39a</td>
<td>37.40a</td>
<td>202.29a</td>
</tr>
<tr>
<td>W3</td>
<td>20.4b</td>
<td>195.64a</td>
<td>35.70a</td>
<td>206.69a</td>
</tr>
</tbody>
</table>

شرایط: W3، W2، W1 به ترتیب عدم کنترل، یک و دو بار کنترل عنفیه‌ها. هر می‌باشد. جدول 5: مقایسه میانگین اثر میزان بذر باریک در سبزیجات کریس 2003 Table 5. Mean comparison of priming × weed control interaction on some traits in maize (SC301)

| تیمار | جاداکتر بذر باریک | حجم بذر باریک | بالغ شدن | غنچه بذر | جنگل بذر | نرخ تولید بذر | ولایت بذر | مقدار بذر | وزن بذر | نرخ جراحی | نرخ زایمان | نرخ نامه | نرخ بذر
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1w1</td>
<td>2.71a</td>
<td>502.5a</td>
<td>11367a</td>
<td>5686.6a</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td>50.33d</td>
<td></td>
</tr>
<tr>
<td>P1w2</td>
<td>3.34a</td>
<td>599.6e</td>
<td>13922e</td>
<td>6544.2b</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td>47.22e</td>
<td></td>
</tr>
<tr>
<td>P1w3</td>
<td>3.37a</td>
<td>697.8g</td>
<td>13230g</td>
<td>6779.9b</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td>52.04def</td>
<td></td>
</tr>
<tr>
<td>P2w1</td>
<td>3.07ab</td>
<td>651.4e</td>
<td>14499e</td>
<td>5536.5d</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td>38.40g</td>
<td></td>
</tr>
<tr>
<td>P2w2</td>
<td>3.27ab</td>
<td>823.2de</td>
<td>16593a</td>
<td>7476.8h</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td>45.18f</td>
<td></td>
</tr>
<tr>
<td>P2w3</td>
<td>3.48a</td>
<td>979.3ab</td>
<td>16000c</td>
<td>7545a</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td>50.05def</td>
<td></td>
</tr>
<tr>
<td>P3w1</td>
<td>3.20ab</td>
<td>752.2b</td>
<td>13699g</td>
<td>6760.3ab</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td>53.48d</td>
<td></td>
</tr>
<tr>
<td>P3w2</td>
<td>3.38a</td>
<td>1086.7a</td>
<td>15883b</td>
<td>7389.3a</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td>55.86b</td>
<td></td>
</tr>
<tr>
<td>P3w3</td>
<td>3.44a</td>
<td>1080a</td>
<td>15308bc</td>
<td>6768b</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td>59.75a</td>
<td></td>
</tr>
<tr>
<td>P4w1</td>
<td>3.65a</td>
<td>636.9de</td>
<td>13201f</td>
<td>5743c</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td>56.60abc</td>
<td></td>
</tr>
<tr>
<td>P4w2</td>
<td>3.30a</td>
<td>890.2abc</td>
<td>14757cd</td>
<td>6177bcd</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td>52.89d</td>
<td></td>
</tr>
<tr>
<td>P4w3</td>
<td>3.56a</td>
<td>864.3b</td>
<td>175709bc</td>
<td>6351b</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td>62.10a</td>
<td></td>
</tr>
</tbody>
</table>

جدول 5: مقایسه میانگین اثر میزان بذر باریک در سبزیجات کریس 2003 Table 5. Mean comparison of priming × weed control interaction on some traits in maize (SC301)

P1، P2، P3 و P4 به ترتیب بدون بذر باریک و یک و دو بار میزان بذر باریک و W1، W2 و W3 به ترتیب عدم کنترل، یک و دو بار کنترل عنفیه‌ها هر است. جدول 6: مقایسه میانگین اثر میزان بذر باریک در سبزیجات کریس 2003 Table 6. Mean comparison of priming × weed control interaction on some traits in maize (SC301)

P1، P2، P3 و P4 به ترتیب بدون بذر باریک و یک و دو بار میزان بذر باریک و W1، W2 و W3 به ترتیب عدم کنترل، یک و دو بار کنترل عنفیه‌ها هر است.
Figure 1. Changes trend of maize SC301 leaf area index under different treatments: A) Non weeding, B) Once weed control, C) Double weed control.
Figure 2. Changes trend of maize SC301 growth rate under different treatments: A) Non weeding, B) Once weed control, C) Double weed control.
Figure 3. Changes trend of maize SC301 total dry weight under different treatments: A) Non weeding, B) Once weed control, C) Double weed control.
References

Effect of on-farm seed priming and weed control on emergence properties, some of growth indices, biological yield and grain yield of hybrid corn SC301 in Hamedan

Akram Mehdizadeh1, Mohammad Ali Aboutalebian2*, Javad Hamzei2 and Goodarz Ahmadvand3

1, 2 and 3. M.Sc. Student, Assist. Profs. and Assoc. Prof., Dept. of Agronomy and Plant Breeding, Bu-Ali Sina University

(Received: August 21, 2011- Accepted: October 28, 2012)

Abstract

To investigate the effects of on-farm seed priming and weed control on some traits in corn (single cross 301), an experiment was arranged in a factorial experiment based on randomized complete block design with three replications at experimental field of the Bu-Ali Sina University, Hamedan, Iran, in 2010. Experimental factors included, on-farm seed priming in four levels (non-primed, priming with urea solution, priming with zinc sulfate solution and priming with tap water) and weed control in three levels (non-weeding, weeding in 20 days after planting and weeding in 20 and 40 days after planting). For on-farm priming the seeds were placed for 16 hours in solutions of urea (6 g.l⁻¹), zinc sulfate (0.34 g.l⁻¹) and tap water, and after surface drying were planted. The results showed that priming with urea and zinc sulfate solutions had highest emergence rate and lowest time to 50 percent emergence (E50) using urea solution caused the most emergence percentage and emergence energy. The maximum emergence index was observed in urea solution. All treatments compared to non-primed–non weeding treatment had higher leaf area index. In other words priming could compensate decreasing effect of weeds on leaf area index. Priming treatments with zinc and urea solutions had highest crop growth rate and total dry weight (Crop Growth Rate: 21.76 and 18.99 gr.m⁻².d⁻¹, respectively), (Total Dry Weight: 1086.76 and 1080 gr.m⁻², respectively). Corn leaf area index duration was not affected by priming, but increased under once and double weed control respectively 22% and 23.9%. Crop growth rate increase with weed control and priming treatments showed most increase. Urea-once weed control and Zinc Sulfate-once weed control treatments had most biological yield. Zinc sulfate and urea treatments showed respectively, 14 and 12% higher yield than the control. Generally results showed that emergence rate and vigor increased by priming with urea and zinc sulphate solutions, also weed control in companion with seed priming increased the studied growth indices and biological yield.

Keywords: Crop growth rate, Emergence energy, Emergence rate, Leaf area duration

*Corresponding author: aboutalebian@yahoo.com