ارزیابی لاین های خویش آمیخته نوترکیب برنج (Oryza sativa L.) ایرانی به تنش شوری در مرحله رویشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه بیوتکنولوژی کشاورزی، پردیس دانشگاهی، دانشگاه گیلان، رشت، ایران

2 دانشیار، گروه بیوتکنولوژی کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 دانشیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد، گنبد کاووس، ایران

4 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

5 استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد، گنبد کاووس، ایران

چکیده

تنش شوری یکی از عوامل محدود کننده تولید در بسیاری از گیاهان زراعی از جمله برنج است. هدف از اجرای این تحقیق، بررسی واکنش 89 لاین خویش­آمیخته نوترکیب حاصل از تلاقی دو رقم برنج ایرانی طارم محلی و خزر تحت دو شرایط بدون تنش و تنش شوری هشت دسی­زیمنس بر متر در مرحله رویشی بود. آزمایش به­صورت گلدانی و در شرایط هوای آزاد در قالب طرح کاملاً تصادفی با چهار تکرار انجام شد. نتایج تجزیه واریانس مرکب تحت دو شرایط بدون تنش و تنش شوری نشان داد که اثر لاین و برهمکنش لاین× تنش برای کلیه صفات مورد مطالعه معنی‌دار و نشان­دهنده واکنش متفاوت لاین­ها در دو شرایط بود. نتایج تجزیه واریانس ساده نیز نشان داد که اختلاف بین لاین­ها در هر دو شرایط برای همه صفات در سطح احتمال یک درصد معنی­دار بود. ارزیابی ضرایب همبستگی بین صفات نشان داد که تحت هر دو شرایط آزمایشی، بالاترین ضریب همبستگی بین دو صفت زیست­توده و وزن خشک ساقه وجود داشت. تجزیه رگرسیون گام به گام برای صفت زیست­توده تحت شرایط بدون تنش نشان داد که به­ترتیب صفات طول ریشه، نسبت وزن ریشه به اندام هوایی، تعداد پنجه در روز 120 و ارتفاع بوته در روز 120، مهم­ترین صفات موثر بر زیست­توده بودند، در حالی­که تحت شرایط تنش شوری، علاوه بر این چهار صفت دو صفت سطح ریشه و حجم ریشه نیز به­عنوان صفات موثر بر زیست­توده شناسایی شدند. نتایج تجزیه به عامل­ها نیز نشان داد که تحت شرایط بدون تنش و تنش شوری، به­ترتیب سه و پنج عامل مستقل و پنهانی، دلیل وجود همبستگی بین زیست­توده و سایر صفات در لاین­ها هستند. تجزیه خوشه­ای به­روش حداقل واریانس Ward تحت شرایط بدون تنش، لاین­ها را در چهار گروه قرار داد که گروه چهارم شامل لاین­های با ارزش بالاتر از میاتگین کل برای بیش­تر صفات بود. تحت شرایط شوری نیز لاین­ها در سه گروه قرار گرفتند و لاین­های گروه اول دارای بیش­ترین مقدار زیست­توده و کم­ترین نمره ژنوتیپی و متحمل به شوری بودند. در کل نتایج این تحقیق نشان داد که لاین­های شماره 6، 9، 13، 14، 17، 18، 23، 24، 34، 39، 44، 45، 68، 79 و 80 علاوه بر زیست­توده بالا، دارای مقادیر بالایی برای بیش­تر صفات مورد مطالعه نسبت به سایر لاین­ها بودند و بنابراین می­توانند به­عنوان لاین­های متحمل به شوری در تحقیقات بعدی مورد توجه قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing Iranian recombinant inbred rice (Oryza sativa L.) lines to salinity stress at vegetative stage

نویسندگان [English]

  • Seyede Minoo Mirarab Razi 1
  • Reza Shirzadian-Khorramabad 2
  • Hossein Sabouri 3
  • Babak Rabiei 4
  • Hossein Hosseini Moghadam 5
1 Ph. D. Student, Dept. of Agricultural Biotechnology, University Campus, University of Guilan, Rasht, Iran
2 Assoc. Prof., Dept. of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Assoc. Prof., Dept. of Plant Production, Faculty of Agriculture Science and Natural Resources, University of Gonbad, Gonbad Kavous, Iran
4 Prof., Dept. of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
5 Assist. Prof., Dept. of Plant Production, Faculty of Agriculture Science and Natural Resources, University of Gonbad, Gonbad Kavous, Iran
چکیده [English]

Salinity is one of the limiting factors in many crops including rice production. The objective of this study was to investigate the response of 89 recombinant inbred lines derived from a cross between two Iranian rice cultivars, Tarom-Mahalli (indica) and Khazar (indica), under non-stress and 8 dS.m-1 salinity stress at vegetative stage conditions. The experiment was carried out as pod experiment under open air conditions in a completely randomized design with four replications. The results of combined analysis of variance under non-stress and salinity stress conditions showed that the the effect of line and line×stress interaction for all the studied traits was significant, indicating different reaction of the lines under two conditions. The results of simple analysis of variance also showed that the difference between lines in both conditions was significant for all traits at 1% probability level. Correlation coefficients among traits indicated that the highest correlation coefficient was observed between biomass and stem dry weight under both conditions. Stepwise regression analysis for biomass under non-stress conditions showed that root length, root to shoot dry weight ratio, number of tillers per plant at 120 th day and plant height at 120th day were the most important traits influencing biomass, respectively, while under salinity stress conditions, root area and root volume in addition to these four traits, were also identified as effective traits on biomass. Factor analysis also showed that three and five independent factors explained the correlation between biomass and the other traits in the studied lines under non-stress and salinity stress conditions, respectively. Cluster analysis using Ward’s minimum variance method under non-stress conditions divided the lines into four groups which the fourth group was consisted the lines with higher values than total average for most traits. Under salinity conditions, the lines were divided into three groups and the lines into first group had the highest biomass and the lowest genotypic score and were tolerant to salinity stress. In total, the results of current study showed that the lines 6, 9, 13, 14, 17, 18, 23, 24, 34, 39, 44, 45, 68, 79 and 80 had the higher values for most the studied traits than the other lines, in addition to higher biomass, and could therefore be considered as salinity tolerant lines in future researchs.

کلیدواژه‌ها [English]

  • Biomass
  • Cluster analysis
  • Factor analysis
  • Stepwise regression
Alizadeh, A. 2006. Crop-water relations. Astan Ghods Razavi Publication, Mashhad. 472 p. (In Persian).##Asch, F., Dingkuhn, M., and Dorffling. K., 2000. Salinity increased CO2 accimilation but reduces growth in field grown irrigated rice. Plant and Soil 218: 1-10.##Ashraf, M. 1994. Breeding for salinity tolerance in plant. Critical Review Plant Science 13: 17-42.##Azizi,H., Aalami, A., Esfahani, M. and Ebadi, A. A. 2017. The study of correlation and path analysis of grain yield and its related traits in rice (Oryza sativa L.) varieties and lines. Journal of Crop Breeding 9 (21): 36-43. (In Persian with English Abstract).##Bramel, P. I., Hinz, P. N., Green, D. E. and Shibles, R. M. 1984. Use of principal fatctor analysis in the study of three stem termination types of soybean. Euphytica 33: 387-400.##Chakravorty, A., Ghosh, P. D. and Sahu, P. K. 2013. Multivariate analysis of phenotypic diversity of landraces of rice of west Bengal. American Journal of Experimental Agriecology 3 (1): 110-123.##Chattopadhyay, K., Marndi, B. C., Sarkar, R. K. and Singh, O. N. 2013. Stability analysis of backcross population for salinity tolerance at reproductive stage in rice. Indian Journal of Genetics 77 (1): 51-58.##Chunthaburee, S., Dongsansuk, A., Sanitchon, J., Pattanagul, W. and Theerakulpisut, P. 2015. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi Journal of Biological Sciences 23: 467-477.##Cormack, R. M. 1991. A review of classification (with discussion).Journal of Royal Statistical Society 134 (3): 321- 367.##Falah, A., Farahmandfar, E. and Moradi, F. 2015. Effect of salinity at different growth stages on some physiological characteristics of rice varieties in greenhouse. Juornal of Agriculture 107: 175-182. (In Persian with English Abstract).##FAO. 2014. FAO statistical database. Food and Agriculture Organizations of the United Nations, Rome, Italy.##Flower, T. J. and Colmer, T. D. 2008. Salinity tolerance in haplophytes. New Phytologist 179: 945-963.##Farahmandfar, A., Poustini, K., Falah, A., Tavakol Afshari, R. and Moradi, F. 2009. Effects of salt stress on seed germination and seedling growth of some Iranian rice (Oryza sativa L.) genotypes and cultivars. Iranian Journal of Field Crop Science 3 (40): 71-94. (In Persian with English Abstract).##Ghomi, Kh., Rabiei, B., Sabouri, H. and Sabouri, A. 2013. Evaluation of seedling stage and identification of appropriate criteria in a rice (Oryza sativa L.) under salinity stress condition. Jornal of Crop Breeding 5 (12): 30-48. (In Persian with English Abstract).##Ghorbani, H., Samizadeh-Lahiji, H. A., Rabiei, B. and Allahgholipour, M. 2011. Grouping different rice genotypes using factoor and cluster analysis. Journal of Agrcultural Science 3: 89-104.##Golparvar, A. R., Ghanadha, M. R. Zali, A. A. and Ahmadi, A. 2003. Evaluation of some morphological traits as selection criteria in breeding wheat. Iranian Journal of Crop Sciences 4 (3): 202-208. (In Persian with English Abstract).##Gregorio, G. B., Senadhira, D. and Mendoza, R. D. 1997. Screening rice for salinity tolerance. IRRI 502 Discussion Paper Series No. 22. International Rice Research Institute, Los Baños, Philippines.##Hakim, M. A., Juraimi, S. A., Begum, M., Hanafi, M. M., Ismail, M. R. and Selamat, A. 2010. Effect of salt stress on germination and early seedling growth of rice. African Journal of Biotechnology 9 (13): 1911-1918.##Hossain, S., Maksudu, H. M. D. and Rahman, J. 2015. Genetic variability, correlation and path coefficient analysis of morphological traits in some extinct local aman Rice (Oryza sativa L). Rice Research 3: 158. doi:10.4172/2375-4338.1000158.##Islam, M. Z., Khalequzzaman, M., Bashar, M. K., Ivy, N. A., Haque, M. M. and Mian, M. A. K. 2016. Variability assessment of aromatic and fine rice germplasm in Bangladesh based on quantitative traits. The Scientific World Jounal 2796720: 1-14.##Khatun, S., Rizzo, C. A. and Flowers, T. J. 1995. Genotypic variation in the effect of salinity on fertility in rice. Plant and Soil 173: 239-250.##Mehmood, A. I., Nawaz, S. and Aslam, M. 2000. Screening of rice (Oryza sativa L.) genotypes against NaCl salinity. International Journal of Agriculture and Biology 2 (1-2): 147-150.##Mirdar-Mansouri, Sh., Babaiyan-Golodar, N. and Bagheri, N. 2011. Evaluation of salt tolerance of rice genotypes in hydroponic culture based on Tolerance and sensitivity to stress index. Iranian Journal of Field Crops Research 9 (4): 694-703. (In Persian with English Abstract).##Mohammadi-Nejad, G., Singh, R. K., Arzani, A., Rezaie, A. M., Sabouri, H. and Gregori, G. B. 2010. Evaluation of salinity tolerance in rice genotypes. International Journal of Plant Production 4 (3): 199-207.##Moradi, F. 2002. Physiological characterization of rice cultivars for salinity tolerance during vegetative and reproductive stages. Ph. D. Dissertation. The University of Philippines, Los Banos, Laguna, Philippines. 190 p.##Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.##Oko, A. O., Ubi, B. E., Efisue, A. A. and Dambaba, N. 2012. Comparative analysis of the chemical nutrient composition of selected local and newly introduced rice varieties grown in Ebonyi State of Nigeria. Internatinal Journal of Agriculture 2 (2): 16-23.##Pons, R., Cornejo, M. J. and Sanz, A. 2011. Differential salinity-induced variations in the activity of H+-pumps and Na+/H+ antiporters that are involved in cytoplasm ion homeostasis as a function of genotype and tolerance level in rice cell lines. Plant Physiology and Biochemistry 49 (12): 1399-1409.##Rajesh, B., Marjorie, De. O., James, E., Abdelbagi, M. and Satyen, M. 2015. Phenotyping rice (Oryza sativa L.) genotypes for physiological traits associated with tolerance of salinity at seedling stage. Scientia Agriculturae 12 (3): 156-162.##Rezaie, A. M. and Soltani, A. 1998. Introduction to applied regression analysis. Isfahan University of Technology Publications. 294 p. (In Persian).##Sabouri, H., Rezaei, A. M., Moemeni, A., Kavousi, M., Shokri, H., Allahgholipour, M. and Jafarian, H. 2009. Evaluation of relationship between some traits of Iranian rice (Oryza sativa. L.) seedlings under saline conditions. Electronic Journal of Crop Production 2 (4): 1-22. (In Persian with English Abstract).##Tuhina-Khatun, M., Hanafi, M. M., Yosop, M. R., Wong, M. Y., Salleh, F. M. and Ferdus, J. 2015.Genetic variation, heritability, and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. Hindawi Publishing Corporation BioMed Research International 290861: 1-7.##Yeo, A. R. and Flowers, T. J. 1984. Mechanism of salinity resistance in rice and their role asphysiological criteria in plant breeding. In: Staples, R. C. and Thoenniessen, G. H. (Eds.). Salinity tolerance in plants. Willey Interscience. New York. pp: 151-170.##Yeo, A. R., Caporn, S. J. M. and Flower, T. J. 1985. The effect of salinity upon photosynthesis in rice (Oryza sativa L.): Gas exchange by individual leaves in relation to their salt content. Journal of Experimental Botany 36 (8): 1240-1248.##Zhang, Y., Ghaly, A. E. and Li, B. 2012. Physical properties of rice residues as affected by variety and climatic and cultivation conditions in three continents. American Journal of Applied Science 9: 1757-1768.##Zhang, Z. H., Liu, Q., Song, H. X., Rong, X. M. and Abdelbagi, M. I. 2011. Responses of contrasting rice (Oryza sativa L.) genotypes to salt stress as affected by nutrient concentrations. Agricultur Science in China 10 (2): 195-206.##Yazdani, M., Kochak, M. and Bagheri, H. 2014. Segregating rice genotypes by cluster analysis procedure at different salt stress condition. Advanced Environmental Biology 8 (10): 383-387.##