AACC, 2000. Approved methods of the American association of cereal chemists. 10th Ed. American Association of Cereal Chemists, St. Paul, MN.##Aghagholizadeh, R., Kadivar, M., Nazari, M., Mousavi, F., Azizi, M. H., Zahedi, M. and Rahiminezhad, M. R. 2017. Characterization of wheat gluten subunits by liquid chromatography- mass spectrometry and their relationship to technological quality of wheat. Journal of Cereal Science 76: 229-235.##Arunachalam, V. and Bandyopadhyay, A. 1984. Limits to genetic divergence for occurrence of heterosis-experimental evidence from crop plants. Indian Journal of Genetics 44: 548-554.##Barak, S., Mudgil, D. and Khatkar, B. S. 2013. Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT-Food Science and Technology 51: 211-217.##Barak, S., Mudgil, D. and Khatkar, B. S. 2014. Influence of gliadin and glutenin fractions on rheological, pasting and textural properties of dough. International Journal of Food Properties 17: 1428-1438.##Borrill, P., Harrington, S. A. and Uauy, C. 2017. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3: Genes, Genomes, Genetics 7: 3019-3029.##Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J. and Guegler, K. J. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research 33: 179-186.##Chu, Z., Chen, J., Xu, H., Dong, Z., Chen, F. and Cui, D. 2016. Identification and comparative analysis of microRNA in wheat (Triticum aestivum L.) callus derived from mature and immature embryos during in vitro culture. Frontiers in Plant Science 7: 1302.##Denčić, S., Mladenov, N. and Kobiljski, B. 2011. Effects of genotype and environment on breadmaking quality in wheat. International Journal of Plant Production 5: 71-82.##Diaz, I., Vicente-Carbajosa, J., Abraham, Z., Martínez, M., Isabel‐La Moneda, I. and Carbonero, P. 2002. The GAMYP protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant Journal 29: 453-464.##Dowell, F. E., Maghirang, E. B., Pierce, R. O., Lookhart, G. L., Bean, S. R., Xie, F. and Chung, O. K. 2008. Relationship of bread quality to kernel, flour, and dough properties. Cereal Chemistry 85: 82-91.##Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y. and Li, Y. 2015. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 1: 1-5.##Elangovan, M., Rai, R., Dholakia, B. B., Lagu, M. D., Tiwari, R., Gupta, R. K. and Gupta, V. S. 2008. Molecular genetic mapping of quantitative trait loci associated with loaf volume in hexaploid wheat ( Triticum aestivum). Journal of Cereal Science 47: 587-598.##Fu, F. F. and Xue, H. W. 2010. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiology 154: 927-938.##Gasparis, S., Yanushevska, Y. and Nadolska-Orczyk, A. 2017. Bioinformatic identification and expression analysis of new microRNAs from wheat (Triticum aestivum L.). Acta Physiologiae Plantarum 39: 1-13.##Gobaa, S., Brabant, C., Kleijer, G. and Stamp, P. 2008. Effect of the 1BL.1RS translocation and of the Glu-B3 variation on fifteen quality tests in a doubled haploid population of wheat (Triticum aestivum L.). Journal of Cereal Science 48: 598-603.##Guo, W., Yang, H., Liu, Y., Gao, Y., Ni, Z., Peng, H. and Yao, Y. 2015. The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. Plant Journal 84: 347-359.##Han, R., Jian, C., Lv, J., Yan, Y., Chi, Q., Li, Z. and Zhao, H. 2014. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics 15: 289.##Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Yu, H. and Qian, Q. 2015. A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant 8: 1455-1465.##Jiang, D., Chen, W., Dong, J., Li, J., Yang, F., Wu, Z. and Zhuang, C. 2018. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. Journal of Experimental Botany 69: 1533-1543.##Jin, X., Fu, Z., Lv, P., Peng, Q., Ding, D., Li, W. and Tang, J. 2015. Identification and characterization of microRNAs during maize grain filling. PLoS ONE 10: e0125800.##Kang, G. Z., Xu, W., Liu, G. Q., Peng, X. Q. and Guo, T. C. 2013. Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm. Genome 56: 115-122.##Khatkar, B. S., Bell, A. E. and Schofield, J. D. 1995. The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. Journal of Cereal Science 22: 29-44.##Lee, Y. S., Lee, D. Y., Cho, L. H. and An, G. 2014. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7: 1-13.##Li, D., Liu, Z., Gao, L., Wang, L., Gao, M., Jiao, Z. and Kan, Y. 2016a. Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS ONE 11: 1-18.##Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J. and Li, P. 2016b. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal 14: 2134-2146.##Li, T., Ma, L., Geng, Y., Hao, C., Chen, X. and Zhang, X. 2015. Small RNA and degradome sequencing reveal complex roles of miRNAs and their targets in developing wheat grains. PLoS ONE 10: e0139658.##Liu, W., Sun, Q., Wang, K., Du, Q. and Li, W. X. 2017. Nitrogen limitation adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytologist 214: 734-744.##Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408.##Mathew, I. E., Das, S., Mahto, A. and Agarwal, P. 2016. Three rice NAC transcription factors heteromerize and are associated with seed size. Frontiers in Plant Science 7: 1-16.##Meng, F., Liu, H., Wang, K., Liu, L., Wang, S., Zhao, Y. and Li, Y. 2013. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biology 13: 19-21.##Mutlu, A. C., Boyaci, I. H., Genis, H. E., Ozturk, R., Basaran-Akgul, N., Sanal, T. and Evlice, A. K. 2011. Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. European Food Research and Technology 233: 267-274.##Nadaud, I., Girousse, C., Debiton, C., Chambon, C., Bouzidi, M. F., Martre, P. and Branlard, G. 2010. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 10: 2901-2910.##Nguyen, G. N., Rothstein, S. J., Spangenberg, G. and Kant, S. 2015. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Frontiers in Plant Science 6: 1-15.##Pandey, R., Joshi, G., Bhardwaj, A. R., Agarwal, M. and Katiyar-Agarwal, S. 2014. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE 9: e95800.##Rodriguez, R. E., Mecchia, M. A., Debernardi, J. M., Schommer, C., Weigel, D. and Palatnik, J. F. 2010. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137: 103-112.##Ross, A. S. and Bettge, A. D. 2009. Passing the test on wheat end-use quality. In: Carver, B. F. (Ed.). Wheat science and trade. Wiley-Blackwell, USA. pp: 455-493.##Shewry, P. R., Mitchell, R. A. C., Tosi, P., Wan, Y., Underwood, C., Lovegrove, A. and Ward, J. L. 2012. An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science 56: 21-30.##Song, Y. and Zheng, Q. 2007. Dynamic rheological properties of wheat flour dough and proteins. Trends in Food Science and Technology 18: 132-138.##Sun, F., Guo, G., Du, J., Guo, W., Peng, H., Ni, Z. and Yao, Y. 2014. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biology 14: 142.##Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. and Dubcovsky, J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298-1301.##Wang, Y., Shi, C., Yang, T., Zhao, L., Chen, J., Zhang, N. and Chen, F. 2018. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat. Scientific Reports 8: 1-18.##Waters, B. M., Uauy, C., Dubcovsky, J. and Grusak, M. A. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany 60: 4263-4274.##Weegels, P. L., Hamer, R. J. and Schofield, J. D. 1996. Functional properties of wheat glutenin. Journal of Cereal Science 23: 1-17.##Wu, F. Y., Tang, Ch. Y., Guo, Y. M., Yang, M. K., Yang, R. W., Lu, G. H. and Yang, Y. H. 2016. Comparison of miRNAs and their targets in seed development between two maize inbred lines by high-throughput sequencing and degradome analysis. PLoS ONE 11: e0159810.##Zhang, K., Shi, X., Zhao, X., Ding, D., Tang, J. and Niu, J. 2015. Investigation of miR396 and growth-regulating factor regulatory network in maize grain filling. Acta Physiologiae Plantarum 37: 28.##Zheng, L., Zhang, X., Zhang, H., Gu, Y., Huang, X., Huang, H. and Huang, Y. 2019. The miR164-dependent regulatory pathway in developing maize seed. Molecular Genetics and Genomics 294: 501-517.##Zi, Y., Shen, H., Dai, S., Ma, X., Ju, W., Wang, C. and Song, J. 2019. Food hydrocolloids comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocolloids 93: 78-86.##