الگوی بیان ژن‌های میتوکندریایی و کلروپلاستی برگ برنج در پاسخ به تنش آهن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی.دانشکده کشاورزی.دانشگاه گیلان

2 دانشگاه گیلان

3 دانشگاه گیلان- ژنتیک مولکولی و بیومتری

چکیده

سمیت آهن سبب اکسیدشدن رنگدانه­­­های فتوسنتزی، افزایش رادیکال­های آزاد اکسیژن و سرانجام کاهش رشد و عملکرد در برنج می­شود. با توجه به اهمیت و تاثیر کمبود یا مازاد آهن بر رشد گیاهان زراعی، این پژوهش به­منظور بررسی اثر آهن بر میزان بیان نسبی ژن‌های AOX، IN-NDH، EX-NDH، NDH، FTR و NTR در دو ژنوتیپ حساس (IR64) و متحمل (Pokkali) برنج انجام شد. یون آهن در سطوح صفر (شاهد)، ۱۰۰، ۲۵۰، ۴۰۰ و ۵۰۰ میلی­گرم در لیتر تحت شرایط هیدروپونیک در محلول یوشیدا اعمال شد. نتایج نشان داد که افزایش میزان آهن محلول غذایی، سبب افزایش میزان آهن محلول در برگ در هر دو ژنوتیپ شد. اعمال سطوح مختلف آهن تفاوت معنی­داری در میزان پتاسیم محلول در برگ ژنوتیپ IR64 ایجاد نکرد، اما سبب افزایش میزان پتاسیم نسبت به نمونه­های شاهد در ژنوتیپ Pokkali شد. بیان تمامی ژن­های مورد مطالعه در همه سطوح تنش، به­غیر از NDH و IN-NDH در سطوح 250 و 400 و NTR در سطح 500 میلی­گرم در لیتر آهن، در ژنوتیپ Pokkali بیش­تر از ژنوتیپ IR64 بود. افزایش بیان نسبی ژن­های مورد بررسی در ژنوتیپ Pokkali نسبت به  IR64و نیز تفاوت در روند تغییرات بیان ژن در سطوح مختلف آهن ممکن است تاثیر معنی­داری بر میزان تحمل گیاه به سمیت ناشی از آهن داشته باشد و افزایش بیان این ژن‌ها به تنهایی یا با هم‌دیگر می‌تواند عامل مهمی در خنثی سازی تاثیرات مضر انواع گونه ‌فعال اکسیژن باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Pattern of mitochondrial and chloroplast gene expression in Rice leaves in response to iron stress

نویسندگان [English]

  • Maryam Pasandideh arjmand 1
  • mohammad mohsenzadeh 2
  • Habibollah Samiezadeh lahiji 3
1 biotechnology.faculty of agriculture sciences. guilan university
2 guilan
3 Plant Biotechnology/ university of Guilan
چکیده [English]

Iron toxicity lead to oxidation of photosynthetic pigments, increasing of free radicals and as a result rice yield to be severely damaged. This study was performed to investigate the effect of iron toxicity on relative expression of alternative oxidase, external alternative NAD(P)H-ubiquinone oxidoreductase, internal alternative NAD(P)H-ubiquinone oxidoreductase, NADH dehydrogenase, NATPH-thioredoxin reductase and ferredoxin-thioredoxin reductase genes in two rice genotypes, IR64 (susceptible) and Pokkali (tolerant). Iron ion was applied at the levels of 0 (check), 100, 250, 400 and 500 mg.lit-1 under Yoshida hydroponic conditions. Results showed that the iron cosentration in leaves increased with increasing of stress levels. There was not a significant difference among IR64 treatments samples for leaves potassium cosentration. But it increased in Pokkali genotype relative to non stress samples .The expression levels of genes in Pokkali except NDH and IN-NDH in 250 and 400 mg li-1 and NTR in 500 mg li-1 samples were higher than IR64. In all, the difference of morphological traits and relative over expression of genes in Pokkali. In all, the difference of morphological traits and relative over expression of genes in Pokkali indicated that the gene could considerably effect on the tolerant level of pokkali by reducing ROS production under Fe-toxicity. Our results showed that high activity of the mitochondrial and genes, alone or together, could also be an important factor in iron tolerance in rice by detoxifying the harmful effects of the ROS.

کلیدواژه‌ها [English]

  • Alternative oxidase
  • Ferredoxin
  • Hydroponic
  • Potassium
  • Relative gene expression
Aliakbari, M. and Razi H. 2013. Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress. Molecular Biology Research Communications 2: 63-71.##Audebert, A. and Sahrawat K. L. 2000. Mechanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition 23: 1877-1885.##Aung, M. S., Masuda, H., Kobayashi, T. and Nishizawa, N. K. 2018. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Science and Plant Nutrition 64: 370-385.##Avramova, V., AbdElgawad, H., Vasileva, I., Petrova, A. S.,  Holek, A., Mariën, J., Asard, H. and Beemster, G. T. S. 2017. High antioxidant activity facilitates maintenance of cell division in leaves of drought tolerant maize hybrids. Frontiers in Plant Science 8: 84.##Balsera, M., and Buchanan, B. B. 2019. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radical Biology and Medicine 140: 28-35.##Borovik, O. A. and Grabelnych, O. I. 2018. Mitochondrial alternative cyanide-resistant oxidase is involved in an increase of heat stress tolerance in spring wheat. Journal of Plant Physiology 231: 310-317.##Buchanan, B. B. and Balmer, Y. 2005. Redox regulation: a broadening horizon. Annual Review of Plant Biology 56: 187-220.##Buchanan, B. B., Schürmann, P., Wolosiuk, R. A. and Jacquot, J. P. 2005. The ferredoxin/thioredoxin system: From discovery to molecular structures and beyond. In: Govindjee, B. J. T., Gest, H. and Allen, J. F. (Eds.). Discoveries in photosynthesis. Advances in photosynthesis and respiration. Vol. 20. Springer, Dordrecht. pp: 859-866.##Cha, J.-Y., Dhirendra, N. B., Min, G. K. and Woe-Yeon, K. 2015. Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants. Plant Signaling and Behavior 10: e1017698.##Cha, J. Y., Kim, J. Y., Jung, I. J., Kim, M. R., Melencion, A., Alam, S. S., Yun, D. J., Lee, S. Y., Kim, M. J. and Kim, W. Y. 2014. NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought. PlantPhysiologyand Biochemistry 80: 184-191.##De Dorlodot, S., Lutts, S. and Bertin, P. 2005. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. Plant Nutrition 28: 1-20.##Dufey, I., Hakizimana, P., Draye, X., Lutts, S. and Bertin, P. 2009. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167: 143-160.##Edreva, A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems and Environment 106: 119-133.##Estefan, G., Sommer, R.  and Ryan, J. 2013. Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa Region 3: 65-119.##Feng, H., Wang, Y., Li, H., Wang, R., Sun, K. and Jia, L. 2010. Salt stress-induced expression of rice AOX1a is mediated through an accumulation of hydrogen peroxide. Biologia 65: 868-873.##Fu, A., Liu, H., Yu, F., Kambakam, S., Luan, S. and Rodermel, S. 2012. Alternative oxidases (AOX1a and AOX2) can functionally substitute for plastid terminal oxidase in Arabidopsis chloroplasts. The Plant Cell 24: 1579-1595.##Gamble, P. E. and Burke, J. J. 1984. Effect of water stress on the chloroplast antioxidant system I. Alterations in glutathione reductase activity. Plant Physiology 76: 615-621.##Gelhaye, E., Rouhier, N., Navrot, N. and Jacquot, J. P. 2005. The plant thioredoxin system. Cellular and Molecular Life Sciences 62: 24-35.##He, L., He, T., Farrar, S., Ji, L., Liu, T. and Xi, Ma. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry 44: 532-553.##Hidalgo, A., Brandolini, A., Pompei, C. and Piscozzi, R. 2006. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). Cereal Science 44: 182-193.##Lepistö, A., Kangasjärvi, S., Luomala, E. M., Brader, G., Sipari, N., Keränen, M., Keinänen, M. and Rintamäki, E. 2009. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiology 149: 1261-1276.##Li, C. R., Liang, D. D., Xu, R. F., Li, H., Zhang, Y, P., Qin, R. Y., Li, L., Wei, P. C. and Yang, J. B. 2013. Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L. Genetics and Molecular Research 12: 5424-5432.##Livak, K. J. and Schmittgen, T. D.  2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408.##Marmagne, A., Brabant, P., Thiellement, H. and Alix, K. 2010. Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential protein regulation. New Phytologist 186: 216-227.##Mehraban, P. and Abdolzadeh, A. 2012. Effects of iron excess on the antioxidant activity and patterns of protein electrophoresis in Oryza sativa var. Shafagh.  Plant Production 19 (1): 85-106. (In Persian with English Abstract).##Mehraban, P., Abdolzadeh, A. and Sadeghipour, H. R. 2008. Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Plant Sciences 7: 251-259.##Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410.##Mohsenzadeh Golfazani, M., Pasandideh Arjmand, M., Kordrostami, M., Samizadeh Lahiji, H.,  Hassani Kumle, H. and Rezadoost, M. H. 2018. The effect of iron stress on the relative expression level of SOD, MDHR and GPX1 genes in tolerant and sensitive genotypes of rice. Crop Biotechnology 8: 1-13. (In Persian with English Abstract).##Mohsenzadeh Golfazani, M., Pasandideh Arjmand, M., Hassani Kumleh, H., Samizadeh Lahiji, H., Vahedi, R. and Ramezanzadeh Bishegahi, S. 2019. The effect of iron toxicity on some of morphological traits, relative gene expression of G6PDH and peroxidase enzyme activity in resistant and susceptible genotypes of rice (Oryza sativa). Cereal Research 9: 207-220. (In Persian with English Abstract).##Mohsenzadeh Golafazani, M., Samizadeh Lahiji, H. and Hassani Kumleh, H. 2017. Patterns of mitochondrial gene expression in rapeseed leaves (Brassica napus L.) at early growth stage in response to drought stress. Iranian Journal of Field Crop Science 48: 67-77. (In Persian with English Abstract).##Montrichard, F., Alkhalfioui, F., Yano, H., Vensel, W. H., Hurkman, W. J. and Buchanan. B. B. 2009. Thioredoxin targets in plants: the first 30 years. Proteomics 72: 452-474.##Moore, A. L., Shiba, T., Young, L., Harada, S., Kita, K. and Ito, K. 2013. Unraveling the heater: New insights into the structure of the alternative oxidase. Annual Review of Plant Biology 64: 637-663.##Nahar, S., Vemireddy, L. R., Sahoo, L. and Tanti, B. 2018. Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India. Rice Science 25: 185-196.##Nikkanen, L., Toivola, J., Diaz, M. J. and Rintamäki, E. 2017. Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160474.##Onyango, D. A., Entila, F., Dida, M. M., Ismail, A. M. and Drame, K. N. 2019. Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Functional Plant Biology 46: 93-105.##Panda, S. K., Sahoo, L., Katsuhara, M. and Matsumoto, H. 2013. Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells. Molecular Biotechnology 54: 551-563.##Pasandideh Arjmand, M., Samizadeh Lahiji, H. and Mohsenzadeh Golfazani, M. 2017. The investigation of some photorespiration genes relative expression in response to drought stress in canola (Brassica napus). Crop Biotechnology 7: 31-42. (In Persian with English Abstract).##Peng, L., Yamamoto, H. and Shikanai, T. 2011. Structure and biogenesis of the chloroplast NAD (P) H dehydrogenase complex. Biochimica et Biophysica Acta 1807: 945-953.##Pessarakli, M. 1999. Handbook of plant and crop stress. CRC Press.##Qureshi, M. K., Munir, S., Shahzad, A. N., Rasul, S., Nouman, W. and Aslam, H. 2018. Role of reactive oxygen species and contribution of new players in defense mechanism under drought stress in rice. Agriculture and Biology 20: 1339-1352.##Rasmusson, A. G., Fernie A. R. and Dongen, J. T. V .2009. Alternative oxidase: a defence against metabolic fluctuations? Physiologia Plantarum 137: 371-382.##Samaras, Y., Bressan, R. A., Csonka, L. N., Garcia-Rios, M. G., Paino, D. and Rhodes, D. 1995. Proline accumulation during drought and salinity. Environment and Plant Metabolism, Bios Scientific Publishers, Oxford 161-187.##Scheibe, R. 1991. Redox-modulation of chloroplast enzymes A common principle for individual control. Plant Physiology 96: 1-3.##Schürmann, P. 2003. Redox signaling in the chloroplast: the ferredoxin/thioredoxin system. Antioxidants and Redox Signaling 5: 69-78.##Schürmann, P. and Jacquot, J. P. 2000. Plant thioredoxin systems revisited. Annual Review of Plant Biology 51: 371-400.##Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C. and Cejudo, F. J. 2004. A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. Biological Chemistry 279: 43821-43827.##Stepien, P. and Klobus, G. 2005. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiologia Plantarum 125: 31-40.##Sunil, B., Saini, D., Bapatla, R. B., Aswani, V. and Raghavendra, A. S. 2019. Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. Photosynthesis Research 139: 67-79.##Sweetman, C., Waterman, C. D., Rainbird, B. M., Smith, P. M. C., Jenkins, C. D., Day, D. A. and Soole, K. L. 2019. AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiology 181: 774-788.##Vahedi, R., Mohsenzadeh Golfazani, M., Pasandideh Arjmand, M. and Samizadeh Lahiji, H. 2019. Investigation of relative expression of some genes related to iron-induced toxicity in two varieties of rice (Oryza sativa). Crop Biotechnology 9: 15-28. (In Persian with English Abstract).##Vanlerberghe, G. C., Cvetkovska, M. and Wang, J. 2009. Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiologia Plantarum 137: 392-406.##Vanlerberghe, G. C., Martyn, G. D. and Dahal, K. 2016. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Physiologia Plantarum 157: 322-337.##Wang, N., Qian, W., Suppanz, I., Wei, L., Mao, B., Long, Y., Meng, J., Müller, A. E. and Jung, C. 2011. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA. FRI. a. Experimental Botany 62: 5641-5658.##Wang, P., Duan, W., Takabayashi, A., Endo, T., Shikanai, T., Ye, J. Y. and Mi, H. 2006. Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiology 141: 465-474.##Wang, Y., Berkowitz, O., Selinski, J., Xu, Y., Hartmann, A. and Whelan, J. 2018. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radical Biology and Medicine 122: 28-39.##Wanniarachchi, V. R., Dametto, L., Sweetman, C., Shavrukov, Y., Day, D. A., Jenkins, C. L. D. and Soole, K. L. 2018. Alternative respiratory pathway component genes (AOX and ND) in rice and barley and their response to stress. Molecular Sciences 19: 915.##Wu, L. B., Shhadi, M. Y., Gregorio, G., Matthus, E., Becker, M. and Frei, M. 2014. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7: 8.##Yang, B., Srivastava, S., Deyholos M. K. and Kav,N. N. 2007. Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Science 173: 156-171.##Yoshida, S., Forno, D. A. and Cock, J. H. 1971. Laboratory manual for physiological studies of rice. Los Baños, Philippines. pp: 1-61.##Zagorchev, L., Seal, C. E., Kranner, I. and Odjakova, M. 2013. A central role for thiols in plant tolerance to abiotic stress. Molecular Sciences 14: 7405-7432.##