ارزیابی تنوع ژنتیکی لاین‌های ذرت (Zea mays L.) تحت شرایط نرمال و تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه. ارومیه، ایران

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه. ارومیه، ایران

چکیده

ذرت به‌عنوان یکی از محصولات غذایی اصلی و علوفه‌ای، علاوه بر دارا بودن عملکرد دانه و زیستی بالا، از اهمیت ویژه‌ای در تأمین کربوهیدرات، روغن خوراکی و انرژی تجدیدپذیر برخوردار است که در طیف وسیعی از شرایط آب و هوایی کشت می‌شود و نسبتاً به شوری حساس است. تولید گیاهان متحمل به تنش شوری جهت پاسخ به تقاضای روزافزون مواد غذایی از طریق کشاورزی پایدار امری اجتناب‌ناپذیر است. در این پژوهش، تنوع ژنتیکی 86 لاین ذرت با استفاده از صفات مورفولوژیک در قالب طرح بلوک‌های کامل تصادفی با سه تکرار، تحت شرایط نرمال و تنش شوری سدیم کلراید در سطح شوری dS/m 8 در شرایط گلدانی بررسی شد. نتایج نشان داد که تنش شوری منجر به کاهش معنی‌دار میانگین صفات عملکرد دانه، طول، عرض و سطح برگ پرچم، ارتفاع بلال اصلی، زاویه برگ، قطر ساقه، نسبت پتاسیم به سدیم، محتوای نسبی آب برگ و تعداد ردیف دانه بلال شد. در مقابل، تنش شوری سبب افزایش بسیار معنی‌دار میانگین صفات روز تا ظهور گل­تاجی و روز تا ظهور کاکل نسبت به شرایط نرمال شد. نتایج تجزیه رگرسیون گام‌به‌گام به‌کمک آماره Cp مالوس و تجزیه علّیت نشان داد که تحت شرایط نرمال، صفات تعداد دانه در ردیف، وزن صد دانه، عرض دانه و تعداد کل برگ، و تحت شرایط تنش شوری، صفات تعداد دانه در ردیف، عمق دانه، وزن چوب بلال و قطر بلال، مهم‌ترین صفات تأثیرگذار بر عملکرد دانه بودند. میزان اشتراک بالای این صفات در تحلیل عاملی، در راستای تأیید این نتایج بود. در روش تحلیل عاملی، با استفاده از روش تجزیه و تحلیل موازی و معیار ساختار بسیار ساده (VSS)، تعداد چهار عامل پنهانی در هر دو شرایط نرمال و تنش شوری تعیین شد که به‌ترتیب ۶۰ و ۶۵ درصد از تنوع کل لاین‌های ذرت را توجیه کردند. تجزیه خوشه‌ای به روش حداقل واریانس وارد با در نظر گرفتن تعداد سه خوشه به‌عنوان تعداد بهینه خوشه‌ها بر اساس روش‌های آرنج، سیلوئت و آماره Gap در هر یک از شرایط نرمال و تنش شوری انجام گرفت. بر اساس مقایسه میانگین خوشه‌ها تحت شرایط تنش شوری و نیز به‌کمک بای‌پلات به‌دست آمده از تجزیه به مؤلفه‌های اصلی، می‌توان والدین مناسب را از بین لاین‌های موجود در خوشه‌های اول و سوم انتخاب و از تلاقی‌های هدفمند بین آن‌ها از پدیده‌هایی همچون هتروزیس و تفکیک متجاوز استفاده و به هیبریدهای ذرت متحمل به تنش شوری و ویژگی­های مهم زراعی اصلاح شده دست یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Genetic Diversity of Maize Lines (Zea mays L.) under Normal and Salinity Stress Conditions

نویسندگان [English]

  • Sorour Arzangh 1
  • Reza Darvishzadeh 2
  • Hadi Alipour 3
1 Ph. D. Student, Dept. of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Prof., Dept. of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Assist. Prof., Dept. of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Maize or corn, as one of the staple food products and forage crop, in addition to having a high grain and biomass yield, is of particular importance in the supply of carbohydrates, edible oils, and renewable energy. The plant is grown under a wide range of climatic conditions and is relatively sensitive to salinity. The development of salt-tolerant varieties of plants is inevitable policy in response to the growing demand for food in sustainable agriculture system. In the present study, the genetic diversity of 86 maize lines was investigated using morphological traits in a randomized complete block design (RCBD) with three replications under normal and NaCl salinity stress (EC 8 dS/m) in potted conditions. The results showed that salinity stress led to a significant decrease in mean of grain yield (GY), flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), ear height (EH), leaf angle (LA), stem diameter (SD), potassium to sodium ratio (K/Na), relative leaf water content (RWC), and number of rows per ear (RPE). In contrast, salinity stress caused a significant increase in the mean of days to tasseling (DTT) and days to silking (DTS) compared to normal conditions. The results obtained from stepwise regression analysis using Mallows’ Cp, and path analysis showed that, traits include number of grains per row (GPR), hundred grain weight (HGW), grain width (GW), and total leaves (TL) under normal conditions and traits include number of grains per row (GPR), grain depth (GDE), cob weight (CD), and ear diameter (ED) under salinity stress conditions were the most important traits affecting grain yield (GY). The great amount of h2 communality of mentioned traits in factor analysis was in order to confirm these results. According to the results of factor analysis using parallel analysis and very simple structure criterion (VSS), four hidden factors were determined in both normal and salinity stress conditions, which explained 60% and 65% of the variability among the maize lines, respectively. Before conducting the cluster analysis, three clusters were determined as the optimal number of clusters by elbow, silhouette and Gap statistics methods in each of normal and salinity stress conditions. Then, hierarchical cluster analysis of the studied maize lines was performed based on measured traits using Ward’s minimum variance method. Therefore, in case of need for hybridization to achieve salt-tolerant maize hybrids and improvement of important agronomic traits, suitable parents can be selected from the first and third clusters using comparisons of mean of the traits in clusters under salinity stress conditions and also with the help of the biplot obtained from principal component analysis (PCA). Targeted crossbreeding between selected parental lines allows for further exploitation of phenomena such as heterosis and aggressive segregation.

کلیدواژه‌ها [English]

  • Gap statistic
  • Morphological traits
  • Multivariate analysis
  • NaCl stress
  • Path analysis
Ahmadizadeh, A., Khajoei-Nejad, G. and Abdoshahi, R. 2018. Effect of salicylic acid on morphological characteristics and yield of sorghum (Sorghum bicolor L.) cultivars under different irrigation regimes. Cereal Research 7 (4): 591-603. (In Persian with English Abstract).##Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J. and Hernandez, J. A. 2017. Plant responses to salt stress: Adaptive mechanisms. Agronomy 7 (18): 1-38.##Ahmed, F. F., Abdel Aal, A. M. K., Aly, M. A. and Ahmed, S. E. A. 2015. Tolerance of some grapevine cultivars to salinity and calcium carbonate in the soil. Stem Cell 6: 45-64.##Alberico, G. J. and Cramer, G. R. 1993. Is the salt tolerance of maize related to sodium exclusion? 1. Preliminary screening of seven cultivars. Journal of Plant Nutrition 16 (11): 2289-2303.##Ashraf, M. and Akram, N. A. 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances 27: 744-752.##Bartels, D. and Sunkar, R. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24: 23-58.##Bhandari, H. R., Nishant Bhanu, A., Srivastava, K., Singh, M. N., Shreya, Hemantaranjan, A. 2017. Assessment of genetic diversity in crop plants- An overview. Advances in Plants and Agricultural Research 7 (3): 279-286.##Böhm, K., Smidt, E. and Tintner, J. 2013. Application of multivariate data analyses in waste management. In: de Freitas, L. V. and de Freitas, A. P. B. R. (Eds.). Multivariate analysis in management, engineering and the sciences. IntechOpen: London, UK.##Breseghello, F. and Coelho, A. S. G. 2013. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry 61: 8277-8286.##Charrad, M., Ghazzali, N., Boiteau, V. and Niknafs, A. 2014. NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software 61: 1-36.##Chaudhary, W. B., Ali, M. A., Bajwa, K. S., Iqbal, A., Khan, M. A., Shahid, A. A. and Aslam, M. 2017. Correlation analysis of maize genotypes under saline stress and its impact on morphological characteristics. Life Science Journal 14 (7): 93-101.##Child, D. 2006. The essentials of factor analysis. 3rd Ed. Bloomsbury Academic Publications. 192 p.##Chinnusamy, V., Jagendorf, A. and Zhu, J. K. 2005. Understanding and improving salt tolerance in plants. Crop Science 45: 437-448.##Cruz, C. D., Carneiro, P. C. S. and Regazzi, A. J. 2014. Modelos biométricos aplicados ao melhoramento genético, 3rd Ed. UFV, Viçosa, MG.##Draper, N. R.  and Smith, H. 1966. Applied regression analysis. Wiley, New York, NY, USA.##Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to quantitative genetics. 4th Ed. Addison Wesley Longman, Harlow.##FAO. 2015. FAO statistical pocketbook. Rome, Italy.##FAO. 2016. FAO soils portal. Available at: http://www.fao.org/soils-portal/soilmanagement/management-of-some-problem-soils/salt-affected-soils/moreinformation-on-salt-affected-soils/en/##FAO 2020. Management of salt affected soils. In: FAO [online]. www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/en/##FAO and ITPS. 2015. Food and Agriculture Organization and Intergovernmental Technical Panel on Soils. 2015. Status of the world’s soil resources: Main report. Rome. 649 p. (also available at www.fao.org/3/a-i5199e.pdf).##Field, A. 2009. Discovering statistics using SPSS. 3rd Ed. SAGE Publications. 821 p.##Ghaedrahmati, M., Mardi, M., Naghavi, M. R., Majidi Heravan, E., Nakhoda, B., Azadi, A. and Mohammadi-Nejad, Gh. 2017. Statistical analysis of yields and its component of seeds resulted from early crosses of wheat cultivars under salinity conditions. Journal of Crop Breeding 9 (21): 56-66 (In Persian with English Abstract).##Ghassemi, F., Jakeman, A. J. and Nix, H. A. 1995. Salinization of land and water resources. Human causes, extent, management and case studies. Center for Resource and Environmental Studies. Canberra, Australian National University.##Gidamis, A. B. and Chove, B. E. 2009. Biotechnology and biosafety: Exploring the debate and public perception in developing countries. Journal of Knowledge Globalization 2: 45-62.##Hallauer, A. R. and Miranda Filho, J. B. 1988. Quantitative genetics in maize breeding. 2nd Ed. Ames, Iowa, Iowa State University Press. 468 p.##Hebbali, A. 2020. R package ‘olsrr’. Ver. 0.5.3. Tools for building OLS regression models.##Howard, M. C. 2016. A review of exploratory factor analysis decision and overview of current practices: What we are doing and how can we improve? International Journal of Human- Computer Interaction 32 (1): 51-62.##Huqe, M. A. S., Haque, M. S., Sagar, A., Uddin, M. N., Hossain, M. A., Hossain, A. Z., Rahman, M. M., Wang, X., Al-Ashkar, I., Ueda, A. and El-Sabagh, A. 2021. Characterization of maize hybrids (Zea mays L.) for detecting salt tolerance based on morpho-physiological characteristics, ion accumulation and genetic variability at early vegetative stage. Plants 10: 2549.##Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q. and Zhang, J. 2019. Salinity stress in arid and semi-arid climates: effects and management in field crops. In: Hussain, S. (Ed.). Climate Change and Agriculture. IntechOpen. pp: 1-26.##Jolliffe, I. 2002. Principal component analysis. Springer series in statistics. 2nd Ed. New York, USA.##Kader, M. A., Seidel, T., Golldack, D. and Lindberg, S. 2006. Expressions of OsHKT1, OsHKT2, and OsVHA are.differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany 57 (15): 4257-4268.##Kaiser, H. F. 1974. An index of factorial simplicity. Psychometrika 39 (1): 31-36.##Kassambara, A. and Mundt, F. 2020. R package ‘factoextra’. Ver. 1.0.7. Extract and visualize the results of multivariate data analyses.##Keith, T. Z. and Reynolds, M. R. 2018. Using confirmatory factor analysis to aid in understanding the constructs measured by intelligence tests. In: Flanagan, D. P. and McDonough, E. M. (Eds.). Contemporary intellectual assessment: Theories, tests, and issues (p. 853-900). The Guilford Press.##Khan, A. A., Rao, S. A. and McNilly, T. M. 2003. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131: 81-89.##Khayatnezhad, M., Gholamin, R., Jamaati-e-Somarin, Sh., Zabihi-e-Mahmoodabad, R. and Badrzadeh, S. 2011. Study of morphological traits of maize cultivars through factor analysis. Advances in Environmental Biology 5 (1): 104-108.##Lautenschlager, G. J. 1989. A comparison of alternatives to conducting Monte Carlo analysis for determining parallel analysis criteria. Multivariate Behavioral Research 24: 365-395.##Luo, M., Zhao, Y., Song, W., Zhang, R., Su, A., Li, C., Wang, X., Xing, J., Shi, Z. and Zhao, J. 2017. Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines. Maydica 62: M11.##Maas, E. V., Donovan, T. T. and Francois, L. E. 1988. Salt tolerance of irrigated guayule. Irrigation Science 9: 199-211.##Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. and Hornik, K. 2021. R package ‘cluster’ Ver. 2.1.2. Cluster analysis basics and extensions.##Mallows, C. L. 1973. Some comments on Cp. Technometrics 15 (4): 661-675.##Masood, M., Ahsan, M., Sadaqat, H. A. and Awan F. 2020. Screening of maize (Zea mays L.) inbred lines under water deficit conditions. Biological and Clinical Sciences Research Journal 2020: p.e007.##Mata, C. G. and Lamattina, L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126: 1196-1204.##Molotoks, A., Smith, P. and Dawson, T. P. 2021. Impacts of land use, population, and climate change on global food security. Food and Energy Security 10: e261.##Mostafavi, K., Firoozi, M. and Mousavi, S. M. N. 2013. Effect of drought stress on yield and yield components of maize hybrids. Science Research and Essays 8 (24): 1145-1149.##Muhammad, Y. and Muhammad, S. 2001. Correlation analysis of S1 families of maize for grain yield and its components. International Journal of Agriculture and Biology 3 (4): 387-388.##Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.##Nemati, A., SedghI, M., Sharifi, R. S. and Seiedi, M. N. 2009. Investigation of correlation between traits and path analysis of corn (Zea mays L.) grain yield at the climate of Ardabil region (northwest Iran). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37 (1): 194-198.##Rahnama, A., James, R. A., Poustini, K. and Munns, R. 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology 37 (3): 255-263.##Ramazani, M., Samizadeh Lahiji, H., Ebrahimi Koulabi, H. and Kafi Ghasemi, A. 2008. Agronomic and morphologic analysis of maize hybrids via factor analysis in Hammedan. Journal of Science and Technology of Agriculture and Natural Resources 12 (45): 99-108 (In Persian with English Abstract).##Revelle, W. 2016. R package ‘psych’. Ver. 1.6.4. Procedures for personality and psychological research. Northwestern University, Evanston, Illinois, USA.##Revelle, W. and Rocklin, T. 1979. Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behavioral Research 14: 403-414.##Saidaiah, P., Satyanarayana, E. and Kumar, S. S. 2008. Association and path coefficient analysis in maize (Zea mays L.). Agricultural Science Digest 28 (2): 79-83.##Schubert, S., Neubert, A., Schierholt, A., Sumer, A. and Zorb, C. 2009. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Science 177: 196-202.##Shao, H., Chu, L., Lu, H., Qi, W., Chen, X., Liu, J., Kuang, S., Tang, B. and Wong, V. 2019. Towards sustainable agriculture for the salt-affected soil. Land Degradation and Development 30: 574-579.##Singh, S. and Pawar, I. S. 2005. Theory and application of biometrical genetics. CBS Publishers, India.##Streiner, D. L. 2005. Finding our way: An introduction to path analysis. The Canadian Journal of Psychiatry 50 (2): 115-122.##Tian, F., Hou, M., Qiu, Y., Zhang, T. and Yuan, Y. 2020. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma 357 (113961): 1-10.##Tilman, D., Blazer, C., Hill, J. and Befort, B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108: 20260-20264.##Wei, T. and Simko, V. 2021. R package ‘corrplot’. Ver. 0.92. Visualization of a correlation matrix.##Yahaya, M. S., Bello, I. and Unguwanrimi, A. Y. 2021. Correlation and path-coefficient analysis for grain yield and agronomic traits of maize (Zea mays L.). Science World Journal 16 (1): 10-13.##Yuhua, Z., Jiapeng, F., Xibao, W. and Liyao, D. 2018. Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biology 18: 375.##Zhao, W., Jung, S. and Schubert, S. 2019. Transcription profile analysis identifies marker genes to distinguish salt shock and salt stress after stepwise acclimation in Arabidopsis thaliana and Zea mays. Plant Physiology and Biochemistry 143: 232-245.##