تحلیل ارتباط در گستره ژنوم صفات زراعی در گندم نان بهاره تحت شرایط متفاوت آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان ، گرگان، ایران

2 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استادیار پژوهشی، مؤسسه تحقیقات کشاورزی دیم کشور، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کهگیلویه و بویراحمد، سازمان تحقیقات، آموزش و ترویج کشاورزی، گچساران، ایران

5 استاد، گروه بانک ژن، مؤسسه تحقیقات ژنتیک گیاهی و گیاهان زراعی لایبنیز (آی.پی.کی.)، لایبنیز، آلمان

چکیده

مقدمه: هدف اصلی تحلیل ارتباط در گستره ژنوم (GWAS)، شناسایی ژن­های مرتبط با یک صفت خاص است. در این روش نقشه­یابی، محققین توالی DNA کل ژنومی افراد جامعه را با هدف یافتن تفاوت­های تک­نوکلئوتیدی بین آن‌ها مورد مقایسه قرار می­دهند. شناسایی و مکان­یابی ژن­های مؤثر در واکنش به کم‌آبی، علاوه بر شناخت مکانیسم­های مولکولی و فیزیولوژیک، می‌تواند درک بهتری از ساختار ژنتیکی جمعیت و کنترل ژنتیکی تنش و نحوه اصلاح آن را در جمعیت مورد مطالعه در اختیار به­نژادگر قرار دهد. در این آزمایش نیز نقشه­یابی ژن­های کنترل‌کننده صفات مهم زراعی گندم نان تحت دو شرایط بدون تنش و تنش کم‌آبی با استفاده از روش تحلیل ارتباطی گستره ژنوم انجام شد. هدف از آزمایش، تحلیل QTLهای مرتبط با واکنش به کم‌آبی و  شناسایی نشانگرهای مرتبط با برخی صفات مهم و مؤثر در گندم نان بود.
مواد و روش­ ها: مواد گیاهی این آزمایش، 121 ژنوتیپ گندم نان بهاره شامل 111 لاین حاصل از توده‏های محلی گندم نان بهاره با منشأ 28 کشور از پنج قاره مختلف و 10 ژنوتیپ گندم نان بهاره از کشورهای ایران و پاکستان بود که تحت دو شرایط بدون تنش و  تنش کم‌آبی در شرایط مزرعه مورد ارزیابی قرار گرفتند. تعیین ژنوتیپ برای نمونه­ها با استفاده از نشانگرهای SNP (15 K SNP array) در شرکت TraitGenetic کشور آلمان انجام و هر ژنوتیپ با استفاده از مجموعه­ای از SNPها ارزیابی شد. برای تعیین ساختار جمعیت، از 147 نشانگر SNP فاقد داده گم‌شده و با توزیع مناسب روی 21 جفت کروموزوم‎ همولوگ گندم نان (هر کروموزوم هفت نشانگر) استفاده شد. به‌منظور تعیین زیرگروه­های احتمالی و بررسی ساختار جمعیت از روش بیزین و نرم‌افزار Structure V 2.3.4 استفاده و سپس با تعیین تعداد بهینه زیرگروه­ها، میانگین شاخص تثبیت (Fst) و ماتریس سهم عضویت (Q) با همین نرم‌افزار محاسبه شد. در ادامه به‌منظور شناسایی نشانگرهای مرتبط با صفات مورد مطالعه در شرایط عدم تنش و تنش کم­آبی از تحلیل ارتباطی در گستره ژنوم با روش مدل خطی عمومی (Q+PCA) با میانگین داده­ها در نرم‌افزار TASSEL 5.0 استفاده شد.
یافته­ های تحقیق: نتایج تجزیه واریانس نشان داد که تنوع ژنتیکی قابل قبولی از نظر کلیه صفات مورد مطالعه بین ژنوتیپ­ها وجود داشت و واکنش ژنوتیپ­ها در مواجهه با تنش کم‌آبی متفاوت بود. بر اساس نقشه­یابی ارتباطی در سطح ژنوم، در مجموع در شرایط عدم تنش و تنش کم‌آبی به­ترتیب 511 و 469 ارتباط معنی­دار نشانگر- صفت شناسایی شد. بیش­ترین ارتباط معنی­دار نشانگر- صفت در تنش کم‌آبی برای صفات ارتفاع بوته، سطح برگ پرچم، طول پدانکل و تعداد دانه در سنبله به­ترتیب روی کروموزوم­های 1A، 2A، 3B و 2A مشاهده شد. همچنین، پنج نشانگر SNP به­ترتیب در جایگاه‌های 30/113، 02/25، 90/13، 10/43 و 97/71 سانتی­مورگان روی کروموزوم‏های 2A، 2A، 5A، 6A و 6B  دارای بالاترین ارتباط معنی­دار با صفات طول و سطح برگ پرچم، ارتفاع بوته، طول پدانکل و عملکرد سنبله تحت شرایط تنش کم‌آبی بودند. علاوه بر این، مکان­های چند صفتی نیز روی کروموزوم 2A برای صفات طول، عرض و سطح برگ پرچم، ارتفاع بوته و عملکرد سنبله تحت شرایط تنش کم­آبی شناسایی شد. در نهایت بر اساس تحلیل ارتباطی گستره ژنوم، به­ترتیب 21، 12، 14، 44، 92 و 14 ارتباط معنی­دار نشانگر- صفت (QTLs) برای صفات طول، عرض و سطح برگ پرچم، ارتفاع بوته، طول پدانکل و عملکرد سنبله تحت شرایط تنش کم­آبی شناسایی شد.
نتیجه­ گیری: نتایج حاصله از این مطالعه، اطلاعات ارزشمندی را در زمینه مبنای ژنتیکی صفات مورد مطالعه در محیط تنش کم‌آبی ارایه داد که می‌توان از آنها در برنامه­های به­نژادی گندم نان از جمله گزینش به­کمک نشانگر (MAS) استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Genome-wide association study for agronomic traits in spring bread wheat under different water conditions

نویسندگان [English]

  • Ahmad Majidi-Mehr 1
  • Mohammad Hadi Pahlavani 2
  • Khalil Zeinali-Nezhad 3
  • Rahmatollah Karimizadeh 4
  • Andeas Borner 5
1 Ph. D. Student, Dept. of Plant Breeding and Biotechnology, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Department of Plant Breeding and Biotechnology, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Assistant Professor, Department of Plant Breeding and Biotechnology, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Research Assistant Professor, Dryland Agricultural Research Institute, Kohgiloyeh and Boyerahmad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Research Organization (AREEO),
5 Professor, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Leibniz, Germany
چکیده [English]

Introduction
The main goal of genome-wide association study (GWAS) is to identify genes associated with a specific trait. In this mapping method, researchers compare the whole genomic DNA sequence of people in the community to find single nucleotide differences between them. Identifying and mapping effective genes in response to drought stress, in addition to understanding the molecular and physiological mechanisms, can provide breeders with a better understanding of the genetic structure of population and the genetic control of stress and it’s breeding in the studied population. In this experiment, the mapping genes controlling important agronomic traits of bread wheat under two non-stress and drought stress conditions using genome wide association analysis method was performed. The objective of the experiment was to analyze QTLs related to the response to water deficit and to identify markers related to some important and effective traits in bread wheat.
Materials and methods
The plant materials of this experiment were 121 spring bread wheat genotypes, including 111 lines obtained from local spring bread wheat varieties originating from 28 countries from five different continents and 10 spring bread wheat genotypes from Iran and Pakistan, which were evaluated under two non-stress and water deficit stress conditions in the field. Genotyping for the samples was done using SNP markers (15 K SNP array) at TraitGenetic Company in Germany, and each genotype was evaluated using a set of SNPs. To determine the population structure, 147 SNP markers with no missing data and with suitable distribution on 21 homologous chromosome pairs of bread wheat (seven markers per chromosome) were used. To determine the possible sub-populations and studying the population structure, Bayesian method and Structure software V 2.3.4 were used, and then the average fixation index (Fst) and membership matrix (Q) were calculated with the same software. Genome-wide association analysis with the general linear model (Q+PCA) method was used to identify the markers related to the studied traits under non-stress and drought stress conditions with average data in TASSEL 5.0 software.
Research findings
The results of analysis of variance showed that there was an acceptable genetic diversity in terms of all the studied traits between the genotypes and reaction of the genotypes to water deficit stress was different. Based on genome-wide association mapping, in total, 511 and 469 significant marker-trait relationships were identified under non-stress and water deficit stress conditions, respectively. The most significant marker-trait association under water deficit stress was revealed for plant height, flag leaf area, peduncle length, and spike yield on chromosomes 1A, 2A, 3B, and 2A, respectively. Also, five SNP markers at positions of 113.30, 25.02, 13.90, 43.10, and 71.97 cM on chromosomes 2A, 2A, 5A, 6A, and 6B, respectively, showed the highest significant associations with flag leaf length and area, plant height, peduncle length, and spike yield under water deficit stress conditions, respectively. Multi-trait loci were also identified on chromosome 2A for flag leaf length, width and area, plant height and spike yield under water stress conditions. Finally, 21, 12, 14, 44, 92 and 14 significant marker-trait associations (QTLs) were found for flag leaf length, width and area, plant height, peduncle length and spike yield under water deficit stress conditions, respectively, using genome-wide association study.
Conclusion
The results of this study provided valuable information on the genetic basis of the studied traits under water deficit stress conditions, which can be used in bread wheat breeding programs, including marker assisted selection (MAS).

کلیدواژه‌ها [English]

  • General linear model
  • Genome
  • Marker
  • QTL
  • SNP
Agricultural Statistics. 2018. Annual Report. Agricultural statistics. Ministry of Agriculture-Jahad. https://www.maj.ir/Index.aspx. [In Persian]
Ahmed, H.G.M.D., Iqbal, M.N., Iqbal, M.A., Zeng, Y., Ullah, A., Iqbal, M., Raza, H., Yar, M.M., Sarwar, N., Imran, M. and Hussain, S. 2021. Genome-wide association mapping for stomata and yield indices in bread wheat under water limited conditions. Agronomy 11: 1646.
Ahmed, H.Gh.M., Sajjad, M., Zeng, Y., Iqbal, M., Habibullah-Khan, S., Ullah, A. and Nadeem Akhtar, M. 2020. Genome-wide association mapping through 90K SNP array for quality and yield attributes in bread wheat against water deficit conditions. Agriculture 10 (9): 2-23.
Ain, Q.U., Rasheed, A., Anwar, A., Mahmood, T., Imtiaz, M., He, Z., Xia, X., Mahmood, T. and Quraishi, U.M. 2015. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Frontiers in Plant Science 6: 1-15.
Cook, B.I., Mankin, J.S. and Anchukaitis, K.J. 2018. Climate change and drought: From past to future. Current Climate Change Reports 4: 164-179.
Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K. and Buckler, E.S. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE
6 (5): 1-9.
FAO. 2022. Crop prospects and food situation. Quarterly global report.  Food and Agriculture Organization of the United Nations. Rome, Italy. Available at: http://www.fao.org/3/i8764en/I8764EN.pdf.
Flint-Garcia, S.A., Thuillet, A.C., Yu, J., Pressoir , G., Romero, S.M. and Mitchell, S.E. 2005. Maize association population: A high resolution platform for quantitative trait locus dissection. Plant Journal 46 (6­): 1054-1064.
Gahlaut, V., Jaiswal, V., Balyan, H.S., Kumar, J.A. and Gupta, P.K. 2021. Multi-locus GWAS for grain weight related traits under rain-fed conditions in common wheat (Triticum aestivum L.). Frontiers in Plant Science 12: 1-13.
Gahlaut, V., Jaiswal, V., Singh, S., Balyan, H.S. and Gupta, P. 2019. Multi-locus genome wide association mapping for yield and its contributing traits in hexaploid wheat under different water regimes. Scientific Reports 9: 1-15.
Hittalmani, S., Huang, N., Courtois, B., Venuprasad, R., Shashidhar, H.E., Zhuang, J.Y., Zheng, K.L., Liu, G.F., Wang, G.C., Sidhu, J.S., Srivantaneeyakul, S., Singh, V.P., Bagali, P.G., Prasanna, H.C., McLaren, G. and Khush, G.S.  2021. Identification of QTL for growth and grain yield -related traits in rice across nine locations of Asia. Theoretical and Applied Genetics 107: 679-690.
Hu, H. and Xiong, L. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology 65: 715-741.
Kalinowski, S.T. 2002. How many alleles per locus should be used to estimate genetic distances? Heredity 88: 62-65.
Khalili, M. and Mohammadi, A. 2016. Mapping QTLs associated with wheat seed germination under normal and drought stress conditions. Crop Biotechnology 9: 1-14. (In Persian with English Abstract).
 Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler E.D. and Doebley, J. 2003. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165: 2117-2128.
Liu, Y., Lin, Y., Gao, Sh., Li, Zh., Ma, J., Deng, M., Chen, G., Wei, Y. and Zheng, Y. 2017.  A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal 19: 861-873.
Liu, Y., Wang, L., Mao., Sh., Liu, K., Lu, Y., Wang, J., Wei., Y. and Zheng, Y. 2015. Genome-wide association study of 29 morphological traits in Aegilops taushii. Scientific Reports 5: 15562.
Mohammadi, Y., Mohammadi, S.A., Moghaddam, M. and Rostaei, M. 2016. Identification of molecular markers linked to the genes controlling width and length flag and second leaves and grain yield in bread wheat under rainfed and supplementary irrigation conditions. Cereal Research 6 (3): 271-282. (In Persian with English Abstract).
Neumann, K., Kobiljski, B., Denčić, S., Varshney, R. and Börner, A. 2011. Genome‒wide association mapping: A case study in bread wheat (Triticum aestivum L.). Molecular Breeding 27: 37-58.
Qaseem, M.F., Qureshi, R., Muqaddasi, Q.H., Shaheen, H., Kousar, R. and Roder, M.S. 2018. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLoS ONE 13 (6): 1-22.
Quraishi, U.M., Murat, F., Abrouk, M., Pont, C., Confolent, C., Oury, F.X., Ward, J., Boros, D., Gebruers, K., Delcour, J.A., Courtin, Ch.M., ­Bedo, Z., ­Saulnier, L., Guillon, F., Balzergue, S., Shewry, P.R., Feuillet, C., ­Charmet, G. and  Salse, J. 2011. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics 11: 71-83.
Rabbi, S.M.H., Kumar, A., Naraghi, S.M., Simsek, S., Sapkota, S., Sonlaki, Sh., Alamri, M.S., Elias, E.M., Kianian, Sh., Missaoui, A. and Mergoum, M. 2021. Genome-wide association mapping for yield and related traits under drought stressed and non-stressed environments in wheat. Frontiers in Genetics 12: 1-13.
Rawson, H.M., Richards, R.A. and Munns, R. 1988. An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Australian Journal of Agricultural Research 39: 759-772.
Safdar, L., Bin, A., Ndleeb, T., Latif, S., Umer, M.J., Tang, M., Li, X., Liu, Sh. and Quraishi, U.M. 2020. Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Frontiers in Plant Science 11: 1-14.
Senapati, N., Stratonovitch, P., Paul, M.J. and Semenov, M.A. 2019. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany 70: 2549-2560.
Sonmezoglu, O. and Terzi, B. 2018. Characterization of some bread wheat genotypes using molecular markers for drought tolerance. Journal of Plant Physiology and Molecular Biology
24 (1): 159-166.
Spataro, G., Tiranti, B., Arcaleni, P., Bellucci, E., Attene, G., Papa, R., Spagnoletti, Z.P. and Negri, V. 2011. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical Application of Genetic 122: 1281-1291.
Sukumaran, S. and Yu, J. 2014. Association mapping of genetic resources: Achievements and future perspectives. In: Tubersoa, R., Garner, A. and Frison, E. (Eds). Genomics of plant genetic resources. pp: 207-235.
Sukumaran, S., Reynolds, M.P. and Sansaloni, C. 2018. Genome-wide association analysis identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Frontiers in Plant Science 9: 1-16.
Terry, G.B., Baeziger, P.S. and Morris. R. 1992. Chromosomal location of wheat quantitative trait loci affecting agronomic performance of seven traits using reciprocal chromosome substitutions. Crop Science 32: 621-627.
Tuberosa, R., Salvi, S., Sanguineti, M.C., Landi, P., Maccaferri, M. and Conti. S. 2002. Mapping QTLs regulating morpho-physiological traits and yield in drought stressed maize: Case studies, shortcomings and perspectives. Annals of Botany 89 (7): 941-963.
Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K. and Graner, A. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173:
638-649.
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S. and Huang, B.E. 2014. Characterization of poly ploid wheat genomic diversity using a high density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787-796.
Zadocs, J.C., Changh, T.T. and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415-421.
Zare-Kohan, M., Babaeian Jelodar, N., Aghnoum, R., Tabatabaee, S.A. and Kazemi Tabar, S.K. 2018. Association mapping of some phonological traits in barley under salt stress. Journal of Crop Breeding 10 (26): 12-21. (In Persian with English Abstract).
Zhu, C., Gore, M., Buckler, E.S. and Yu, J. 2008. Status and prospects of association mapping in plants. The Plant Genome 1 (1): 5-20.