شناسایی نشانگرهای ریزماهواره پیوسته با نواحی ژنومی کنترل کننده عملکرد و صفات فنوفیزیولوژیک در توده‌ها و ارقام گندم نان تحت شرایط متفاوت رطوبتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

3 دانشیار، گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

چکیده

مقدمه: گندم یکی از اصلی­ترین گیاهان زراعی جهان است و تنش خشکی نیز از عمده‌ترین عوامل محیطی کاهش محصولات کشاورزی است. ارزیابی تنوع ژنتیکی در فعالیت‌های به‌نژادی، پایه اصلی پیشرفت و دست‌یابی به خودکفایی در بخش کشاورزی است. این آزمایش به­منظور بررسی ارتباط نشانگرهای ریزماهواره، با نواحی ژنومی کنترل کننده عملکرد، صفات فیزیولوژیک و فنولوژیک در 23 توده و دو رقم گندم نان و همچنین ارزیابی تنوع ژنتیکی جمعیت مورد مطالعه از نظر عملکرد، صفات فیزیولوژیک، فنولوژیک و نشانگرهای ریزماهواره تحت شرایط دیم و آبیاری انجام شد.
مواد و روش‌ها: این پژوهش در سال زراعی 96-1395 در قالب طرح بلوک‌های کامل تصادفی با سه تکرار تحت دو شرایط دیم و آبیاری نرمال در مزرعه تحقیقاتی دانشگاه رازی اجرا شد. صفات اندازه­گیری شده شامل عملکرد دانه، 15 صفت فیزیولوژیک و 6 صفت فنولوژیک بودند. به­منظور ارزیابی مولکولی ژنوتیپ­های مورد مطالعه از 20 جفت نشانگر ریزماهواره استفاده شد. DNA ژنومی از گیاهچه‌های دو تا سه هفته­ای حاصل از کشت بذرها با روش CTAB تغییر یافته و به­صورت بالک استخراج شد. جهت تعیین کیفیت و کمیت DNA ژنومی استخراج شده از روش الکتروفورز ژل آگارز 8/0 درصد استفاده شد. در نهایت رابطه بین نشانگرهای ریزماهواره، عملکرد، صفات فیزیولوژیک و فنولوژیک در شرایط دیم و آبیاری با استفاده از تجزیه رگرسیون گام به گام توسط نرم‌افزار SPSS23 بررسی شد.
یافته‌های تحقیق: تجزیه واریانس نشان داد که اختلاف معنی‌داری بین توده‌ها برای بیشتر صفات مورد مطالعه وجود داشت. در ارزیابی تنوع ژنتیکی توده‌ها با استفاده از 20 جفت نشانگر ریزماهواره، 16 ترکیب آغازگری چندشکلی مناسبی داشتند. آغازگرهای XCFD168-2D، XGWM350-7D و XGWM136-1A مناسب‌ترین آغازگرها برای گندم در مطالعات بعدی معرفی شدند. نتایج تجزیه ارتباطی به وسیله رگرسیون گام به گام نشان داد در هر دو شرایط دیم و آبیاری، نشانگرهای XGWM350 (a3) و XGWM334 (a1) در مورد صفات فیزیولوژیک و نشانگرهای XGWM642 (a1)، XGWM350 (a1) و XCFD168 (a1) در مورد صفات فنولوژیک مشترک بودند. نشانگر XGWM410 (a1) در مورد عملکرد، صفات فیزیولوژیک و فنولوژیک در هر دو شرایط؛ نشانگر XGWM265 (a1) در مورد عملکرد و صفات فیزیولوژیک در شرایط آبیاری و صفات فنولوژیک در هر دو شرایط؛ نشانگر XGWM124 (a2) در مورد عملکرد و برخی صفات فیزیولوژیک در شرایط دیم و صفات فنولوژیک در هر دو شرایط؛ نشانگر XGWM165 (a1) در مورد صفات فیزیولوژیک و فنولوژیک در شرایط دیم و نشانگر XGWM577 (a2) در مورد عملکرد دانه و صفات فیزیولوژیک در شرایط آبیاری و برخی صفات فنولوژیک در شرایط دیم به طور مشترک دارای ارتباط بودند. در ضمن بیشترین نشانگرهای مثبت در شرایط دیم مربوط به صفت سرعت پر شدن دانه و در شرایط آبیاری به ترتیب مربوط به صفات عملکرد دانه، کارایی مصرف آب، سرعت پر شدن دانه، محتوی آب نسبی برگ و روز تا رسیدگی فیزیولوژیک می‌باشد.
نتیجه‌گیری: با توجه به ارزیابی تنوع ژنتیکی، آغازگرهای XCFD168-2D، XGWM350-7D و XGWM136-1A، مناسب‌ترین آغازگرها برای گندم در مطالعات بعدی معرفی می­شوند. نتایج تجزیه ارتباطی نیز نشان داد که بیش­تر نشانگرهای تولیدی توسط آغازگرهای مورد استفاده در این پژوهش دارای ارتباط معنی‌دار بالایی با صفات مورد مطالعه بودند. با استفاده از این آغازگرها که توانایی تکثیر مکان‌های ژنی آگاهی‌بخش را دارند، می‌توان گیاهان را در مرحله گیاهچه‌ای غربالگری کرد. از طرف دیگر، آغازگرهای ریزماهواره پیوسته با صفات، در برنامه‌های اصلاحی گزینش به­کمک نشانگر به­منظور شناسایی والدین مناسب جهت تهیه جمعیت‌های نقشه‌یابی و تولید ارقام جدید پیشنهاد می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of microsatellite markers associated with genomic regions controlling yield and pheno-physiological traits in bread wheat accessions and cultivars under different moisture conditions

نویسندگان [English]

  • Fatemeh Bavandpouri 1
  • Ezatollah Farshadfar 2
  • Mohsen Farshadfar 3
1 Ph.D. Graduate, Department of Plant Production Engineering and Genetics, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran
2 Professor, Department of Plant Production Engineering and Genetics, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran
3 Associate Professor, Department of Agriculture, Payame Noor University, Tehran, Iran
چکیده [English]

Introduction
Wheat is one of the most stable crop in the world, and drought stress is one of the major environmental factors that reduce agricultural products. Evaluation of genetic diversity in plant breeding program is the main basis for development and achieving self-sufficiency in the agricultural product. The objective of this experiment was to investigate the association between microsatellite markers and genomic regions controlling yield, physiological, and phenological traits in 23 accessions and two cultivars of bread wheat, as well as to evaluate the genetic diversity of the studied population in term of yield, physiological and phenological traits, and microsatellite markers under rainfed and irrigation conditions.
Materials and methods
A field experiment was carried out in a randomized complete block design with three replications under rainfed and irrigation conditions in the research field of Razi University, Kermanshah, Iran, in 2016-2017. Grain yield, 15 physiological traits and six phenological traits were measured. Twenty microsatellite markers were used for molecular evaluation of the studied genotypes. Genomic DNA was extracted as bulk from 2-3 weeks old seedlings by modified CTAB method. To determine the quality and quantity of the extracted DNA, electrophoresis on 0.8% agarose gel was used. Finally, the association between microsatellite markers, yield, physiological and phenological traits in rainfed and irrigated conditions was calculated using stepwise regression analysis by SPSS23 software.
Research findings
Analysis of variance showed that there was a significant difference between the accessions for most of the traits studied. Sixteen out of twenty markers had detectable polymorphisms. The XCFD168-2D, XGWM350-7D and XGWM136-1A primers were the most suitable primers for subsequent studies. Association analysis by stepwise regression showed that in rainfed and irrigation conditions, markers XGWM350 (a3) and XGWM334 (a1) were common for physiological traits and markers XGWM642 (a1), XGWM350 (a1), and XCFD168 (a1) were common for phenological traits. The XGWM410 (a1) marker on yield, physiological and phenological traits in both conditions; XGWM265 (a1) marker on yield and physiological traits in irrigation conditions and phenological traits in both conditions; XGWM124 (a2) marker on yield and some physiological traits in rainfed conditions and phenological traits in both conditions; XGWM165 (a1) marker on physiological and phenological traits in rainfed conditions, and XGWM577 (a2) markers on grain yield and physiological traits in irrigation conditions and some phenological traits in rainfed conditions were jointly related. In addition, the most positive markers in rainfed conditions are related to the trait of rate of filing seed, and in irrigated conditions, respectively, they are related to grain yield, water use efficiency, rate of filing seed, relative water content, and days to physiological maturity traits.
Conclusion
According to the evaluation of the genetic diversity of primers XCFD168-2D, XGWM350-7D and XGWM136-1A, the most suitable primers for wheat were introduced in subsequent studies. Based on the association analysis, most of the markers produced by the primers used in this research had a high significant associated with the studied traits, and by using these primers, which have the ability to reproduce informative loci, plants can be screened at the seedling stage. Furthermore, The microsatellite primers linked to traits are suggested in marker assisted selection breeding programs to identify suitable parents for constructing mapping populations and producing new varieties.

کلیدواژه‌ها [English]

  • Association analysis
  • Phenological and physiological traits
  • Microsatellite primer
  • Triticum aestivum L
Abdollahi Mandoulakani, B. and Azizi, H. 2014. Identification of ISSR markers associated with morphological traits in cultivated alfalfa (Medicago sativa L.) populations. Journal of Cellular and Molecular Research, 27(2), pp. 260-268. [In Persian]. https://dorl.net/dor/20.1001.1.23832738.1393.27.2.10.0.##Abdolshahi, R., Safarian, A., Nazari, M., Pourseyedi, S. and Mohamadi-Nejad, G. 2013. Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 59, pp. 685-704. https://doi.org/10.1080/03650340.2012.667080.##Ahmadi, Gh., Siosemarde, A., Sohrabi, Y. and Jalal Kamali, M. 2021. Relationship between developmental traits and grain yield in durum wheat (Triticum durum Desf.) under terminal drought stress condition. Applied Research in Field Crops, 33(4), pp. 84-107. [In Persian]. https://doi.org/10.22092/AJ.2021.343422.1484.##Ahmed, K., Shabbir, Gh., Ahmed, M. and Nawaz Shah, K. 2020. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Science of the Total Environment, 729, pp. 1-14. https://doi.org/10.1016/j.scitotenv.2020.139082.##Al-Ashkar, I., Alderfasi, A., Ben Romdhane, W., Seleiman, M.F., El-Said, R.A. and Al-Doss, A. 2020. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants, 9(287), pp. 1-21. https://doi.org/10.3390/plants9030287.##Ali, M.L., Baenziger, P.S., Ajlouni, Z.Al., Campbell, B.T., Gill, K.S., Eskridge, K.M., Mujeeb-Kazi, A. and Dweikat, I. 2011. Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Science, 51, pp. 553-566. https://doi.org/10.2135/cropsci2010.06.0359.##Al-Naggar, A.M.M., El-Shafi, M.A. E.M.A., El-Shal, M.H. and Anany, A.H. 2020. Molecular assessment of genetic diversity among egyptian landraces of wheat (Triticum aestivum L.) using microsatellite markers. Asian Journal of Biochemistry, Genetics and Molecular Biology, 3(4), pp. 46-58. https://doi.org/ 10.9734/ajbgmb/2020/v3i430094.##Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. and Sorrells, M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1), pp. 181-186. https://doi.org/10.1139/g93-024.##Ashrafi Parchin, R., Najaphi, A., Farshadfar, E. and Hokmalipour, S. 2011.  Evaluation of wheat Genotypes under drought stress based on phenological traits. International Journal of Agriculture and Crop Sciences, 3 (1), pp. 12-19. https://doi.org/IJACS/2011/3-1/12-19.##Barrs, H.D. 1968. Determination of water deficits in plant tissues. In: Kozolvski, T.T. (Ed.), Water Deficits and Plant Growth. Academic Press, pp. 235-368. http://hdl.handle.net/102.100.100/323274?index=1.##Chavez-Ontiveros, J., Quintero-Soto, M.F., Pineda-Hidalgo, K.V., Lopez-Moreno, H.S., Reyes-Moreno, C., Garzon-Tiznado, J.A. and Lopez-Valenzuela, J.A. 2020. Microsatellite-based genetic diversity and grain quality variation in chickpea genotypes from Mexico and international collections. Agrociencia, 54(1), pp. 57-73.##Clarke‚ C.M.‚ and McCaig, T.N. 1982. Evaluation of techniques for screening for drought resistance in wheat. Crop Science, 22, pp. 503-506. https://doi.org/10.2135/cropsci1982.0011183X002200030015x.##Dezhestan, S., Izadi Dogunchi, M., Asghari, E. and Sadeghzadeh, B. 2016. Genetic diversity of barley (Hordeum vulgare) genotypes using microsatellite markers and association analysis of traits related to drought compatibility. Journal of Seedling and Seed Breeding, 1-32(3), pp. 67-82. [In Persian]. https://doi.org/10.22092/spij.2017.111289.##Doyle, J.J. and Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, pp. 11-15.##Ebrahimi, A., Naghavi, M., Sabokdast, M. and Moradis, S.A. 2011. Association analysis of agronomic traits with microsatellite markers in Iranian barley landraces barley. Modern Genetics Journal, 6 (1), pp. 35-43. [In Persion]. https://dorl.net/dor/20.1001.1.20084439.1390.6.1.5.3.##El-Esawi, M.A., Elashtokhy, M.M.A., Shamseldin, S.A.M., El-Ballat, E.M., Zayed, E.M. and Heikal, Y.M. 2023. Analysis of genetic diversity and phylogenetic relationships of wheat (Triticum aestivum L.) genotypes using phenological, molecular and DNA barcoding markers. Genes, 14(34), pp. 1-29. https://doi.org/10.3390/genes14010034.##Farhangian-Kashani, S., Khaghani, Sh., Azadi, A., Changizi, M. and Gomarian, M. 2022. Genetic structure of population and association analysis of some morpho-physiological traits of bread wheat using Simple Sequence Repeats (SSR) under salinity stress. Journal of Plant Environmental Physiology, 65(2), 40-56. [In Persian]. https://doi.org/10.30495/iper.2022.690249.##Farshadfar, A. 2018. Genetic Modification of Environmental Stresses. First Edition. Vosough Publications. 844 p. [In Persian].##Ghasemi, N., Mirfarkhai, R.H. and Abbasi, A.S. 2019. Genetic diversity of bread wheat (Triticum aestivum L.) cultivars using microsatellite markers. Journal Crop Breed Research, 29, pp. 9-16 [In Persian]. https://doi.org/10.29252/jcb.11.29.9.##Gholizadeh Seresti, R., Sabouri, H., Rahemi Karizaki, A., Fallahi, H.A. and Rezaei, M. 2020. Identification of alleles related to rice traits using association analysis and haplotyping under normal and drought stress. Environmental Stresses in Crop Sciences, 12(4), pp. 1003-1016. [In Persian]. https://doi.org/10.22077/escs.2019.1665.1373.##Haghpanah, K., Mirfakhraee, R., Khodadadi, M. and Shamsifar, S. 2020. Study on genetic diversity of some barley (Hordeum vulgare L.) cultivars using SSR marker and physiological traits plant pigments and proline under late cold stress. Journal of Crop Breeding, 12(34), pp. 199-209. [In Persian]. https://doi.org/10.29252/jcb.12.34.199.##Hashemi Nasab, H. 2011. Study of several biochemical criteria of drought resistance in wheat cultivars and their relationship with yield. M.Sc. Dissertation in Plant Breeding. Shiraz University. [In Persian].##Ilyas, N., Amjid, M.W., Saleem, M.A., Khan, W., Wattoo, F.M., Rana, R.M., Maqsood, R.H., Zahid, A., Shah, G.A., Anwar, A., Ahmad, M.Q., Shaheen, M., Riaz, H. and Ansari, M.J. 2020. Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition. Saudi Journal of Biological Sciences, 27, pp. 341-351. https://doi.org/10.1016/j.sjbs.2019.10.003.##Karimi Dastgerdi, Z., Mohammadi, Sh., Hooshmand, S. and Rabiei, M. 2020. The Study of different irrigation regimes influences on heritability and some physiological characteristics in wheat genotypes (Triticum aestivum L.). Journal of Crop Production, 13(4), 111-134. [In Persian]. https://doi.org/10.22069/ejcp.2021.18421.2365.##Khodadadi, Z., Omidi, M., Etminan, A. and Ebrahimi, A. 2020. Analysis of genetic diversity and relationships among different genotypes of Triticum aestivum and Aegilops tauschii using SSR markers. Modern Genetics Journal, 15(4), pp. 287-296. [In Persian]. https://dorl.net/dor/20.1001.1.20084439.1399.15.4.10.7.##Khodadadi, Z., Omidi, M., Etminan, A. Ebrahimi, A. and Pour-Aboughadareh, A. 2023. Molecular and physiological variability in bread wheat and its wild relative (Aegilops tauschii Coss.) species under water-deficit stress conditions. BioTech (Basel), 12(3), pp. 1-14. https://doi.org/10.3390/biotech12010003.##Knott, S. A. 2005. Regression-based quantitative trait loci mapping: Robust, efficient and effective. Philosophical Transactions of the Royal Society B, 360, pp. 1435-1442. https://doi.org/10.1098/rstb.2005.1671.##Kouhestani, M., Sadeghzadeh, S., Ebrahimi, M.A. and Yousefi, A. 2016. Identification of SSR markers associated with agronomic traits in durum wheat. Proceedings of the 2nd International and 14th Iranian Genetics Congress. 21-23 May, 2016, Shahid Beheshti University, Tehran, Iran.##Kumar, p., Gupta, V.K., Misra, A.K., Modi, D.R. and Pandy, B.K. 2009. Potential of molecular markers in plant biotechnology. Plant Omics Journals, 2(4), pp. 141-162. https://doi.org/10.3316/informit.090706285698938.##Lichtenthaler, H., and Wellburn, A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, pp. 591-592. https://doi.org/10.1042/bst0110591.##Manette, A.S., Richard, C.J., Carver, B.F. and Mornhinweg, D.W. 1988. Water relations in winter wheat as drought reistance indicators. Crop Science, 28, pp. 526-531. https://doi.org/10.2135/cropsci1988.0011183X002800030021x.##Mirdrikvand, R., Khyrolahi, A., Ebrahimi, A. and Rezvani, M. 2015. Study of genetic diversity among some rainfed bread and durum wheat genotypes, using SSR markers. Journal of Plant Genetic Research, 2(1), pp. 35-44. [In Persian]. https://doi.org/10.29252/pgr.2.1.35.##Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R.M. and Varshney, R.K. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125, pp. 625-645. https://doi.org/10.1007/s00122-012-1904-9.##Mohammadi, M., Mirfakhraee, S.R.G. and Abbasi, A.R. 2015. Genetic diversity in bread wheat (Triticum aestivum L.) as revealed by microsatellite markers and association analysis of physiological traits related to spring cold stress. Modern Genetics Journal, 9(3), pp. 279-288. [In Persian]. https://dorl.net/dor/20.1001.1.20084439.1393.9.3.4.7.##Mohammadi, S.A. and Prasanna, B.M. 2003. Analysis of genetic diversity in crop plants: Salient statistical tools and considerations. Crop Science, 43, pp. 1235-1248. https://doi.org/10.2135/cropsci2003.1235.##Mohammadi, S.A., Prasanna, B.M. Cudan, C. and Singh, N.N. 2002. A microsatellite marker based study of chromosomal regions and gene effects on yield and yield components in maize. Cellular and Molecular Biology Letters, 7, pp. 599-606.##Moosavi, S.S., Abdi, F., Abdollahi, M.R., Tahmasebi-Enferadi, S. and Maleki, M. 2020. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. Plant Physiology and Biochemistry, 156, pp. 95-104. https://doi.org/10.1016/j.plaphy.2020.08.016.##Naderi, F., Bavandpori, F., Farshadfar, E. and Farshadfar, M. 2020. Screening and identification of drought tolerant bread wheat landraces (Triticum aestivum L.). Journal of Crop Ecophysiology, 14(2), pp. 275-292. [In Persian]. https://doi.org/10.30495/jcep.2020.676143.##Nahas, L.D., Alsamman, A.M., Hamwieh, A., Al-Husein, N. and Lababidi, Gh. 2020. Characterization of EST‑SSR markers in bread wheat EST related to drought tolerance and functional analysis of SSR‑containing unigenes. Highlights in Bioscience, 3, pp. 1-12. https://doi.org/10.36462/H.BioSci.20203.##Najaphy, A., Ashrafi, R. and Farshadfar, E. 2012. Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnology and Biotechnological Equipment, 25, pp. 2634-2638. https://doi.org/10.5504/BBEQ.2011.0093.##Nikzade Talebi, S., Aalami, E., Esfahani, M. and Ebadi, E.A. 2016. Evaluation of allic frequency and association analysis of microsatellite markers with some traits related to pre-harvest sprouting in rice (Oryza sativa L.) cultivars. Iranian Journal of Crop Sciences, 18(1), pp. 49-62. [In Persian]. https://dorl.net/dor/20.1001.1.15625540.1395.18.1.4.3.##Noori, A. 2013. Investigation of the genetic diversity structure of wild wheatgrass Aegilops lindrica populations in Iran using genomic, cytogenetic and morphological microsatellite markers. M.Sc. Dissertation in Plant Breeding, Ilam University. [In Persian].##Pireivatioum, J., Qasimov, N. and Maralian, H. 2010. Effect of soil water stress on yield and prolin content of four wheat lines. African Journal of Biotechnology, 9, pp. 036-040. https://doi.org/10.4314/AJB.V9I1.##Rakshit A., Rakshit, S., Singh, J., Chopra, S.K., Balyan, H.S., Gupta, P.K. and Bhat, S.R. 2010. Association of AFLP and SSR markers with agronomic and fibre quality traits in Gossypium hirsutum L. Journal of Genetics, 89, pp. 155-162. https://doi.org/10.1007/s12041-010-0055-5.##Ramya, P., Chaubal, A., Kulkarni, K., Gipta, L., Kadoo, N., Dhaliwal, H.S., Chhuneja, P., Lagu, M. and Gupta, V. 2010. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). Journal of Applied Genetics, 51, pp. 421-429. https://doi.org/10.1007/BF03208872.##Ranjbar, M., Naghavi, M.R., Zali, A., Aghaei, M.J. and Mardi, M. 2009. Identification of informative markers of SSR in Aegilops crassa accessions of Iran. Journal of Agriculture, 11, pp. 47-56. [In Persian].##Ruan, Ch. 2010. Germplasm-regression-combined marker-trait association identification in plants. African Journal of Biotechnology, 9(5), pp. 573-580. https://doi.org/10.5897/AJB09.001.##Sallam, A., Alqudah, A.M., Dawood, M., Baenziger, P.S. and Borner, A. 2019. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20, pp. 1-36. https://doi.org/10.3390/ijms20133137.##Shiri, A., Ramezanpour, S.S., Soltanloo, H., Kalateh Arabi, M. and Kia, Sh. 2014. Evaluation of genetic diversity of some cultivated barley (Hordeum vulgare L.) lines by AFLP markers. Modern Genetics Journal, 9(4), pp. 429-438. [In Persian]. https://dorl.net/dor/20.1001.1.20084439.1393.9.4.5.0.##Soleimani, Z., Ramshini, H., Mortazavian, S.M.M., Fazelnajafabadi, M. and Foughi, B. 2014. Screening for drought tolerance in Iranian wheat genotypes (Triticum aestivum L.) using physiological traits evaluated under drought stress and normal condition. Australian Journal of Crop Science, 8(2), pp. 200-207. https://doi.org/10.3316/informit.198674556160794.##Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: just design the right  scenario. Journal of Experimental Botany, 63, pp. 25-31. https://doi.org/10.1093/jxb/err269.##Virk, P.S., Ford-Lioyd, B.V., Jackson, M.T., Pooni, H.S., Clemeno, T.P. and Newbury, H.J. 1996. Marker-assisted prediction of agronomic traits using diverse rice germplasm. In: IRRI, Rice genetics III. Proceedings of The 3rd International Rice Genetics Symposium. 16-20 Oct. 1995, Manilla, Philippines. Pp. 307-316. https://doi.org/10.1142/9789812814289_0026.##Wright, P.R., Morgan, J., Jessop, R. and Cass, A. 1995. Comparative adaptation of canola  (Brassica napus) and Indian mustard  (B. juncea) to soil water deficits: yield and yield components. Field Crops Research, 42, pp. 1-13. https://doi.org/10.1016/0378-4290(95)00013-G.##Xing, H., Tan, L., An, L., Zhao, Z., Wang, S. and Zhang, C. 2004. Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: Inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regulation, 42, pp. 61-68. https://doi.org/10.1023/B:GROW.0000014894.48683.1b.##Yaghotipoor, A. 2016. Association analysis of drought resistance indices and stability parameters in bread wheat. Ph.D. Dissertation in Plant Breeding, Razi University, Kermanshah, Iran. [In Persian].##Zali, H., Sofalian, O., Hasanloo, T., Zeinalabedini, M. and Asghari, Ali. 2020. Evaluation of association among canola physiologic and morphologic traits with SSR molecular marker in drought stress condition. Environmental Stresses in Crop Sciences, 12(4), pp. 1017-1029. [In Persian]. https://doi.org/10.22077/escs.2019.1705.1385.##Zergani, M., Ranjbar, Gh. A. and Ebrahimnezhad, Sh. 2015. Molecular assessment of genetic diversity among bread wheat (Triticum aestivum L.) doubled haploid lines using ssr markers. Journal of Crop Breeding, 7(15), pp. 88-95. [In Persian]. https://dorl.net/dor/20.1001.1.22286128.1394.7.15.12.2.##