Bernardo, R. 2010. Breeding for Quantitative Traits in Plants, 2
nd Edition. Stemma Press, Woodbury, MN, USA.##
Branlard, G.; Pierre, J.; Rousset, M. 1992. Selection indices for quality evaluation in wheat breeding.
Theoretical and Applied Genetics, 84, pp. 57-64. https://doi.org.10.1007/BF00223981.##
Brim, C. A., Johnson, H. W. and Cockerham, C. C. 1959. Multiple selection criteria in soybeans.
Agronomy Journal, 51, pp. 42–46.
https://doi.org/10.2134/agronj1959.00021962005100010015x.##
Cerón-Rojas, J. J., and Crossa, J. 2018. Linear selection indices in modern plant breeding.
Springer.
https://doi.org/10.1007/978-3-319-91223-3. (eBook).##
Cerón-Rojas, J. J. and Crossa, J. 2020. Combined multi-stage linear genomic selection indices to predict the net genetic merit in plant breeding.
G3: Genes, Genomes, Genetics, 10, pp. 2087- 2101. doi:
https://doi.org/10.1534/g3.120.401171.##
Cerón-Rojas J. J. and Crossa J. 2022. The statistical theory of linear selection indices from phenotypic to genomic selection.
Crop Science, 62, pp. 537–563. doi:
10.1002/csc2.20676.##
Cerón-Rojas, J. J., Gowda, M., Toledo, F., Beyene, Y., Bentley, A. R. Crespo-Herrera, L. Gardner, K. and Crossa, J. 2023. A linear profit function for economic weights of linear phenotypic selection indices in plant breeding.
Crop Science, pp.
1–13.
https://doi.org/10.1002/csc2.20882.##
Crossa, J., Jesús Cerón-Rojas, J., Martini, J. W. R., Covarrubias-Pazaran, G., Alvarado, G., Toledo, F. H. and Govindan, V. 2022. Theory and practice of phenotypic and genomic selection indices.
Wheat Improvement,
593–616. https://doi.org/10.1007/978-3-030-90673-3_32.##
Dekkers, J. C. M. 2007. Prediction of response to marker-assisted and genomic selection using selection index theory.
Journal of Animal Breeding and Genetics, 124, pp. 331–341.
https://doi.org/10.1111/j. 1439 0388.2007.00701.x.##
Dekkers, J. C. M. and Settar, P. 2004. Long-term selection with known quantitative trait loci.
Plant Breeding Reviews, 24, pp. 311–335.##
Dekkers, J. C. M., and Dentine, M. R. 1991. Quantitative genetic variation associated with chromosomal markers in segregating populations.
Theoretical and Applied Genetics, 81, pp. 212–220.
https://doi.org/ 10.1007/BF00215725.f.##
Eagles, H. A. and Frey, K. J. 1974. Expected and actual gains in economic value of oat lines from five selection methods.
Crop Science, 14, pp. 861–864.
https://doi.org/10.2135/cropsci1974.0011183X001400060026x.##
Emrani, S., Rezai, A. and Arzani A. 2008. Comparison of Selection Indices for Yield and Related Traits of Barley under Nitrogen Stress and Non-Stress Conditions.
Journal of Crop Production and Processing, 11 (42): pp.183-194. (In Persian).
http://jstnar.iut.ac.ir/article-1-779-en.html##
Esheghi, R., Javid, O. and Samira, S. 2011. Genetic gain through selection indices in hulless barley.
International Journal of Agriculture and Biology, 13, pp. 191-197. 10–431/AWB/2011/13–2–191–197.##
Falconer, D.S. and Mackay, T.F.C. 1996. Introduction to Quantitative Genetics, fourth ed. Longman, New York, 464.##
Gazal, A., Nehvi, F.A., Lone, A.A., Dar, Z.A. and Wani, M.A. 2017. Smith Hazel Selection Index for the Improvement of Maize Inbred Lines under Water Stress Conditions.
International Journal of Pure and Applied Bioscience, 5 (1), pp. 72-81 doi:
http://dx.doi.org/10.18782/2320-7051.2444.##
Gill, H.S., Halder, J., Zhang, J., Brar, N. K., Rai, T.S., Hall, C., Bernardo, A., Amand, P. S., Bai, G., Olson, E., Ali, S., Turnipseed, B. and Sehga, S.K. 2021. Multi-Trait Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding Lines of Winter Wheat.
Frontiers of Plant Science, 12, 709545. doi: 10.3389/fpls.2021.709545.##
Gimelfarb, A., and Lande, R. 1994. Simulation of marker-assisted selection in hybrid populations.
Genetic Research, 63, pp. 39-47. https://doi. org/10.1017/S0016672300032067.##
Gimelfarb, A., and Lande, R. 1995. Marker-assisted selection and marker-QTL associations in hybrid populations. Theoretical and Applied Genetics, 91, pp. 522-528. https://doi.org/10.1007/BF0022298.##
Ghaffari Azar, A., Darvishzadeh, R., Hatami Maleki, H., Kahrizi, D., Darvishi, B. and Bernoosi, I. 2018. Identification of Inter simple sequence repeat regions associated with agro-morphological traits in maize genome.
Cereal Research, 8 (1), pp. 97-109. [In Persian]. Doi:
10.22124/c.2018.8211.1322.##
Gravois, K. A. and McNew, R. W. 1993. Genetic relationships among and selection for rice yield and yield components.
Crop Science, 33, pp. 249–252.
https://doi.org/10.2135/cropsci1993.0011183X003300020006x.##
Hazel, L.N. 1943.The genetic basis for constructing selection indexes.
Genetics, 28, pp. 476–490.
https://doi.org/10.1093/genetics/28.6.476.##
Hazel, L. N., and Lush, J. L. 1942. The efficiency of three methods of selection.
The Journal of Heredity, 33, pp. 393–399.
https://doi.org/10.1093/oxfordjournals.jhered.a105102.##
Hazel, L. N., Dickerson, G. E., and Freeman, A. E. 1994. The selection index: Then, now, and for the future.
Journal of
Dairy Science, 77, pp. 3236-3251. https://doi.org/10.3168/jds.S0022-0302 (94)77265-9.##
Hidalgo-Contreras, J.V., Salinas-Ruiz, J. and Eskridge, K.M. 2021. Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models.
Agronomy, 11, 1953.
https://doi.org/10.3390/ agronomy11101953.##
Htwe, N. M., Aye, M. and Thu, C. N. 2020. Selection Index for Yield and Yield Contributing Traits in Improved Rice Genotypes.
International Journal of Engineering Research and Development, 11(2), pp. 86- 91.##
Iqbal, M., Semagn, K., Céron-Rojas, J.J., Crossa, J., Jarquin, D., Howard, R., Beres, B.L., Strenzke, K., Ciechanowska, I. and Spaner, D. 2022. Identification of Spring Wheat with Superior Agronomic Performance under Contrasting Nitrogen Managements Using Linear Phenotypic Selection Indices.
Plants, 11, 1887.
https://doi.org/10.3390/plants11141887.##
Jannatdoust, M., Darvishzadeh, R. and Ebrahimi, M. A. 2014. Studying genetic diversity in confectionary sunflower (Helianthus annuus L.) by using microsatellit markers.
Crop Biotechnology, 6, pp. 61-72. [In Persian].
20.1001.1.22520783.1393.4.6.6.0.##
Juliana, P., He, X., Poland, J., Roy, K. K., Malaker, P. K., Mishra, V. K., Chand, R., Shrestha, S., Kumar, U., Roy, C., Gahtyari, N. C., Joshi, A. K., Singh, R. P. and Singh, P. K. 2022. Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half- sibs and index-based selection for spot blotch, heading and plant height.
Theoretical and Applied Genetics, 135, pp. 1965–1983.
https://doi.org/10.1007/ s00122-022-04087-y.##
Karthikeya Reddy, S.G.P. and Babariya, C. A. 2020. Selection indices for yield improvement in bread wheat (
Triticum aestivum L.).
Electronic Journal of Plant Breeding, 11 (1), pp. 314-317. https://doi.org/10.37992/2020.1101.056.##
Kempthorne, O., and Nordskog, A. W. 1959. Restricted selection indices.
Biometrics, 15(1), pp. 10–19.
https://doi.org/10.2307/2527598.##
Khavari Khorasani, S. and Mahdi Poor A. 2018. Genetic improvement of Grain Yield by Determination of Selection Index in Single Cross Hybrids of Maize (
Zea mays L.).
Plant Genetic Reseearch, 5 (1), pp. 1-18.
http://pgr.lu.ac.ir/article-1-119-en.html##
Lande, R., and Thompson, R. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits.
Genetics,
124, pp. 743–756. https://doi.org/10.1093/genetics/124.3.743.##
Li, Z. 1998. Molecular analysis of epistasis affecting complex traits. In A. H. Paterson (Ed.), Molecular dissection of complex traits. CRC Press LLC, pp.119–130.##
Mahdy, R.E., Althagafi, Z.M.A., Al-Zahrani, R.M., Aloufi, H.H.K., Alsalmi, R.A., Abeed, A.H.A.; Mahdy, E.E. and Tammam, S.A. 2022. Comparison of Desired-Genetic-Gain Selection Indices in Late Generations as an Insight on Superior-Family Formation in Bread Wheat (
Triticum aestivum L.). Agronomy, 12, 1738.
https://doi.org/10.3390/ agronomy12081738.##
Mather, K., and Jinks, J. L. 1971. Biometrical genetics: the study of continuous variation. Chapman and
Hall, London.##
Modarresi, M., Assad, M. T. and Kheradnam, M. 2004. Determining Selection Indices in Corn Hybrids (
Zea mays L.) to Increase Grain.
Journal of Water and Soil Science, 7 (4); pp.71-82.
20.1001.1.24763594.1382.7.4.7.7.##Moreau, L., Lemarié, S., Charcosset, A., and Gallais, A. 2000. Economic efficiency of one cycle of marker-assisted selection efficiency.
Crop Science, 40, pp. 329–337. https://doi.org/10.2135/cropsci2000.402329x.##
Moreau, L., Hospital, F., and Whittaker, J. 2007. Marker-assisted selection and introgression. In: Balding D.J., Bishop M, Cannings C. (eds),
Handbook of statistical genetics, (1, 3
rd ed.). Wiley, New York, pp. 718–751.##
Moreira, S. O., Kuhlcamp, Barros, K. T., F. L. S. Zucoloto, M. and Godinho, T. O. 2019. Selection index based on phenotypic and genotypic values predicted by REML/BLUP in Papaya.
Revista Brasileira de Fruticultura, 41(1), e-079. doi.org /10.1590/0100-29452019079.##
Pacheco, A., Pérez, S., Alvarado, G., Ceron, J., Rodríguez, F., Crossa J, Burgueño J. 2017. RIndSel: selection indices for plant breeding. hdl:11529/10854, CIMMYT Research Data & Software Repository Network, V1.##
Pesek, J. and Baker, R. J. 1970. An application of index selection to the improvement of self.pollinated species.
Canadian Journal of Plant Science, 50, pp. 267-276.
https://doi.org/10.4141/cjps70-051.##
Rabiei, B., Valizadeh, M., Ghareyazie, B. and Moghaddam, M. 2004. Evaluation of selection indices for improving rice grain shape.
Field Crops Research, 89, pp. 359–367.
https://doi.org/10.1016/j.fcr.2004.02.016.##
Randhawa, H. S., Asif, M., Pozniak, C., Clarke, J. M., Graf, R. J., Fox, S. L., et al. 2013. Application of molecular markers to wheat breeding in Canada.
Plant Breeding, 132, pp. 458–471. doi: 10.1111/pbr.12057.##
Robinson, H. F., Comstock, R. E. and Harvey, P. H. 1951. Genotypic and phenotypic correlations in corn and their implications in selection.
Agronomy Journal, 43, pp. 282-287.##
Sabouri, H., Rabiei, B. and Fazlalipour, M. 2008. Use of selection indices based on multivariate analysis for improving grain yield in rice.
Rice Science, 15, pp. 303–310.
https://doi.org/10.1016/S1672-6308(09)60008-1.##
Shah, S., Mehta, D. R. and Raval, L. 2016. Selection indices in bread wheat (
Triticum aestivum L.).
Electronic Journal of Plant Breeding, 7(2), pp. 459-463. DOI:
10.5958/0975-928X.2016.00059.4.##
Smiderle, É. C., Furtini, I.V., da Silva, C. S.C., Botelho, F. B. S. et al. 2019. Index selection for multiple traits in upland rice progenies.
Revista de Ciências Agrárias, 42(1): pp. 4-12. https://doi.org/10.19084/RCA18059.##
Smith, H.F. 1936. A discriminant function for plant selection.
Annals of Eugenics, 7, pp. 240–250.
https://doi.org/10.1111/j.1469-1809.1936. tb02143.x.##
Smith, O., Hallauer, A. R. and Russell, W. A. 1981. Use of index selection in recurrent selection programs in maize.
Euphytica, 30, pp. 611–618. https://doi.org/10.1007/BF00038788.##
Suwantaradon, K., Eberhart, S. A., Mock, J. J., Owens, J. C. and Guthrie, W. D. 1975. Index selection for several agronomic traits in the BSSS2 maize population.
Crop science, 15(6), pp. 827–833.
https://doi.org/10.2135/cropsci1975.0011183X001500060025x.##
Smiderle, E. C., Furtini, I. V., Silva, C. S. C. da, Botelho, F. B. S., Resende, M. P. M., Botelho, R. T. C., Colombari Filho, J. M., Castro, A. P. de, and Utumi, M. M. 2019. Index selection for multiple traits in upland rice progenies.
Security Content Automation Protocol, 42(1), pp. 4-12. Doi: 10.19084/RCA18059.##
Strefeler, M.S. and Wehner, T.C. 1986. Estimates of heritabilities and genetic variances of three yield and five quality traits in three fresh-market cucumber populations.
The Journal of the American Society for Horticultural Science, 111, pp. 599-605.##
Tahmasbali, M., Darvishzadeh, R. and Fayaz Moghaddam, A. 2021. Evaluation of oriental tobacco (
Nicotiana tabacum L.) genotypes using selection indices under the presence and absence of broomrape.
Iranian Journal of Field Crops Research, 52 (3), pp. 189-207. doi: 10.22059/IJFCS.2020.300277.654707. [In Persian].##
Zhang, W., and Smith, C. 1992. Computer simulation of marker-assisted selection utilizing linkage disequilibrium.
Theoretical and Applied Genetics, 83, pp. 813–820. https://doi.org/10.1007/BF00226702.##
Zhang, W., and Smith, C. 1993. Simulation of marker-assisted selection utilizing linkage disequilibrium: The effects of several additional factors.
Theoretical and Applied Genetics, 86, pp. 492–496.
https://doi.org/10.1007/BF00838565.