Ahmad, H. M., Alafari, H. A., Fiaz, S., Alshaya, D. S., Toor, S., Ijaz, M., Rasool, N., Attia, K. A., Zaynab, M., & Azmat, S. (2022). Genome-wide comparison and identification of myosin gene family in
Arabidopsis thaliana and
Helianthus annuus.
Heliyon,
8(12), e12070. doi: 10.1016/j.heliyon.2022.e12070.##Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegel, V., Fortier, A., & Gasteiger, E. (2012). ExPASy: SIB bioinformatics resource portal.
Nucleic Acids Research,
40(W1), W597-W603. doi:
10.1093/nar/gks400.##Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching.
Nucleic Acids Research,
37, W202-W208. doi:
10.1093/nar/gkp335.##Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data.
Plant Bioinformatics: Methods & Protocols,
1374, 115-140. doi:
10.1007/978-1-4939-3167-5_6.##Borrill, P., Ramirez-Gonzalez, R., & Uauy, C. (2016). ExpVIP: A customizable RNA-seq data analysis and visualization platform.
Plant Physiology,
170(4), 2172-2186. doi:
10.1104/pp.15.01667.##Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., & May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in
Arabidopsis thaliana.
BMC Plant Biology,
4, 10. doi: 10.1186/1471-2229-4-10.##Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., & He, Y. (2023). TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining.
Molecular Plant,
16(11), 1733-1742. doi:
10.1016/j.molp.2023.09.010.##Chen, L., Meng, J., He, X. L., Zhang, M., & Luan, Y. S. (2019). Solanum lycopersicum microRNA1916 targets multiple target genes and negatively regulates the immune response in tomato.
Plant, Cell & Environment,
42(4), 1393
-1407. doi:
10.1111/pce.13468.##Dobritsa, A. A., Nishikawa, S.-I., Preuss, D., Urbanczyk-Wochniak, E., Sumner, L. W., Hammond, A., Carlson, A. L., & Swanson, R. J. (2009). LAP3, a novel plant protein required for pollen development, is essential
for proper exine formation.
Sexual Plant Reproduction,
22(3), 167-177. doi:
10.1007/s00497-009-0101-8.##Fabbri, M., Delp, G., Schmidt, O., & Theopold, U. (2000). Animal and plant members of a gene family with similarity to alkaloid-synthesizing
enzymes.
Biochemical & Biophysical Research Communications,
271(1), 191-196. doi:
10.1006/bbrc.2000.2598.##Facchini, P. J., Bird, D. A., & St-Pierre, B. (2004). Can Arabidopsis make complex alkaloids?
Trends in Plant Science,
9, 116-122. doi:
10.1016/j.tplants.2004.01.004.##Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis.
Agronomy,
9, 352. doi:
10.3390/agronomy9070352.##Gu, L., Cao, Y., Chen, X., Wang, H., Zhu, B., Du, X., & Sun, Y. (2023). The genome-wide identification, characterization, and expression analysis of the strictosidine synthase-like family in maize (
Zea mays L.).
International Journal of Molecular Sciences,
24, 14733. doi:
10.3390/ijms241914733.##Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., Wang, Y., & Wang, J. (2008). Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
Journal of Genetics & Genomics,
35, 105-118. doi:
10.1016/S1673-8527(08)60016-8.##Hernandez-Garcia, C. M., & Finer, J. J. (2014). Identification and validation of promoters and cis-acting regulatory elements.
Plant Science,
217, 109-119. doi: 10.1016/j.plantsci.2013.12.007.##Hicks, M. A., Barber, A. E., & Babbitt, P. C. (2013). The Nucleophilic Attack Six‐Bladed β‐Propeller (N6P) Superfamily. In: Orengo, C., & Bateman, A. (Eds.). Protein Families: Relating Protein Sequence, Structure, and Function. Wiley Online Library. pp. 125-158. doi: 10.1002/9781118743089.ch6.##Hicks, M. A., Barber, A. E., Giddings, L. A., Caldwell, J., O'connor, S. E., & Babbitt, P. C. (2011). The evolution of function in strictosidine synthase‐like proteins.
Proteins: Structure, Function, & Bioinformatics,
79(11), 3082-3098. doi:
10.1002/prot.23135.##Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K.-M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions.
Agronomy,
11(5), 968. doi:
10.3390/agronomy11050968.##Kibble
, N. A., Sohani, M. M., Shirley, N., Byrt, C., Roessner, U., Bacic, A., Schmidt, O., & Schultz, C. J. (2009). Phylogenetic analysis and functional characterisation of strictosidine synthase-like genes in
Arabidopsis thaliana.
Functional Plant Biology,
36, 1098
-1109. doi:
10.1071/FP09104.##Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets.
Molecular Biology & Evolution,
33(7), 1870-1874. doi:
10.1093/molbev/msw054.##Kutchan, T., Hampp, N., Lottspeich, F., Beyreuther, K., & Zenk, M. (1988). The cDNA clone for strictosidine synthase from
Rauvolfia serpentina DNA sequence determination and expression in E
scherichia coli.
FEBS Letters,
237, 40-44. doi:
10.1016/0014-5793(88)80167-4.##Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van De Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences.
Nucleic Acids Research,
30(1), 325-327. doi:
10.1093/nar/30.1.325.##Letunic, I., & Bork, P. (2018). 20 years of the SMART protein domain annotation resource.
Nucleic Acids Research,
46(D1), D493-D496. doi:
10.1093/nar/gkx922.##Liu, H., Lyu, H. M., Zhu, K., Van De Peer, Y., & Cheng, Z. M. (2021). The emergence and evolution of intron‐poor and intronless genes in intron‐rich plant gene families.
The Plant Journal,
105, 1072-1082. doi:
10.1111/tpj.15088.##Liu, M., Dong, H., Wang, M., & Liu, Q. (2020). Evolutionary divergence of function and expression of laccase genes in plants.
Journal of Genetics,
99, 1-16. doi:
10.1007/s12041-020-1184-0.##Magwanga, R. O., Lu, P., Kirungu, J. N., Lu, H., Wang, X., Cai, X., Zhou, Z., Zhang, Z., Salih, H., & Wang, K. (2018). Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton.
BMC Genetics,
19, 6. doi: 10.1186/s12863-017-0596-1.##Qanmber, G., Liu, J., Yu, D., Liu, Z., Lu, L., Mo, H., Ma, S., Wang, Z., & Yang, Z. (2019). Genome-wide identification and characterization of the PERK gene family in
Gossypium hirsutum reveals gene duplication and functional divergence.
International Journal of Molecular Sciences,
20, 1750.
10.3390/ijms20071750.##Sarcheshmeh, M. K., Abedi, A., & Aalami, A. (2023). Genome-wide survey of catalase genes in
Brassica rapa,
Brassica oleracea, and
Brassica napus: Identification, characterization, molecular evolution, and expression profiling of BnCATs in response to salt and cadmium stress.
Protoplasma,
260, 899-917. doi:
10.1007/s00709-022-01822-6.##Sievers, F., & Higgins, D. G. (2014). Clustal omega.
Current Protocols in Bioinformatics,
48, 313. doi:
10.1002/0471250953.bi0313s48.##Smedley, D., Haider, S., Ballester, B., Holland, R., London, D., Thorisson, G., & Kasprzyk, A. (2009). BioMart–biological queries made easy.
BMC Genomics,
10, 1-12. doi:
10.1186/1471-2164-10-22.##Sohani, M., Schenk, P., Schultz, C., & Schmidt, O. (2009). Phylogenetic and transcriptional analysis of a strictosidine synthase‐like gene family in
Arabidopsis thaliana reveals involvement in plant defence responses.
Plant Biology,
11, 105-117. doi:
10.1111/j.1438-8677.2008.00139.x.##Theopold, U., Samakovlis, C., Erdjument-Bromage, H., Dillon, N., Axelsson, B., Schmidt, O., Tempst, P., & Hultmark, D. (1996). Helix pomatia lectin, an inducer of
Drosophila immune response, binds to hemomucin, a novel surface mucin.
Journal of Biological Chemistry,
271, 12708-12715. doi:
10.1074/jbc.271.22.12708.##Wang, R., Zhao, W., Yao, W., Wang, Y., Jiang, T., & Liu, H. (2023a). Genome-wide analysis of strictosidine synthase-like gene family revealed their response to biotic/abiotic stress in poplar.
International Journal of Molecular Sciences,
24(12), 10117. doi:
10.3390/ijms241210117.##Wang, T., Song, H., Zhang, B., Lu, Q., Liu, Z., Zhang, S., Guo, R., Wang, C., Zhao, Z., & Liu, J. (2018). Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet (
Setaria italica L.).
3 Biotech,
8(12), 486. doi: 10.1007/s13205-018-1502-x.##Wang, Y., Ruan, Q., Zhu, X., Wang, B., Wei, B., & Wei, X. (2023b). Identification of alfalfa
SPL gene family and expression analysis under biotic and abiotic stresses.
Scientific Reports,
13, 84. doi:
10.1038/s41598-022-26911-7.##Wu, X., Zhou, C., Li, X., Lin, J., Aguila, L. C. R., Wen, F., & Wang, L. (2023). Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid,
Ectropis grisescens Warren (Geometridae, Lepidoptera).
BMC Genomics,
24, 344. doi:
10.1186/s12864-023-09446-7.##Xu, G., Guo, C., Shan, H., & Kong, H. (2012). Divergence of duplicate genes in exon–intron structure.
Proceedings of the National Academy of Sciences,
109, 1187-1192. doi:
10.1073/pnas.1109047109.##Yamazaki, Y., Urano, A., Sudo, H., Kitajima, M., Takayama, H., Yamazaki, M., Aimi, N., & Saito, K. (2003). Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants.
Phytochemistry,
62(3), 461-470. doi:
10.1016/S0031-9422(02)00543-5.##Yan, F., Zhou, H., Yue, M., Yang, G., Li, H., Zhang, S., & Zhao, P. (2019). Genome-wide identification and transcriptional expression profiles of the F-box gene family in common walnut (
Juglans regia L.).
Forests,
10(3), 275. doi:
10.3390/f10030275.##Yoshida, S., Ito, M., Nishida, I., & Watanabe, A. (2001). Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in
Arabidopsis thaliana.
Plant & Cell Physiology,
42(2), 170-178. doi:
10.1093/pcp/pce021.##Yoshioka, Y., Suzuki, G., Zayasu, Y., Yamashita, H., & Shinzato, C. (2022). Comparative genomics highlight the importance of lineage-specific gene families in evolutionary divergence of the coral genus,
Montipora.
BMC Ecology & Evolution,
22, 71. doi:
10.1186/s12862-022-02023-8.##Yu, J., Yuan, Y., Dong, L., & Cui, G. (2023). Genome-wide investigation of NLP gene family members in alfalfa (
Medicago sativa L.): Evolution and expression profiles during development and stress.
BMC genomics,
24, 320. doi:
10.1186/s12864-023-09418-x.##Yuan, Y., Yin, X., Han, X., Han, S., Li, Y., Ma, D., Fang, Z., Yin, J., & Gong, S. (2023). Genome-wide identification, characterization and expression analysis of the
TaDUF724 gene family in wheat (
Triticum aestivum).
International Journal of Molecular Sciences,
24(18), 14248. doi:
10.3390/ijms241814248.##Zhang, L., Li, S., Fang, X., An, H., & Zhang, X. (2023).
Genome-wide analysis of LysM gene family members and their expression in response to Colletotrichum fructicola infection in Octoploid strawberry (Fragaria×ananassa).
Frontiers in Plant Science,
13, 1105591. doi: 10.3389/fpls.2022.1105591
.##Zou, T., Li, S., Liu, M., Wang, T., Xiao, Q., Chen, D., Li, Q., Liang, Y., Zhu, J., & Liang, Y. (2017). An atypical strictosidine synthase,
OsSTRL2, plays key roles in anther development and pollen wall formation in rice.
Scientific Reports,
7, 6863. doi:
10.1038/s41598-017-07064-4.