Alonso, M., Rozados, M. J., Vega, J. A., Perez-Gorostiaga, P., Cuinas, P., Fonturbel, M. T., & Fernandes, C. (2002). Biochemical responses of
Pinus pinaster tree to fire- induced trunk girdling and crown scorch: Secondary metabolites and pigments as needle chemical indicators.
Journal of Ecology,
28, 687-700. doi:
10.1023/A:1015276423880.
##Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in Canola (
Brassica napus L.).
Environmental and Experimental Botany,
63(1-3), 266-273. doi:
10.52547/JCT.7.4.375.
##Bajjii, M., Lutts, S., & Kinet, K. M. (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (
Triticum durum Desf) cultivars performing in arid conditions.
Plant Science,
60, 669-681. doi:
10.1016/s0168-9452(00)00443-x.
##Cavalcanti, F. R., Lima, J. P. M. S., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea.
Journal of Plant Physiology,
164(5), 591- 600. doi:
10.1016/j.jplph.2006.03.004.
##Dadashi, M. R., Majidi Hervan, I., Soltani, A., & Noorinia, A. A. (2007). Evaluation of different genotypes of barley to salinity stress.
Journal of Agricultural Sciences,
13(1), 181-191.
##Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances.
Analysis Chemistry,
28(3), 350-356 doi:
10.1021/ac60111a017.
##Farshadfar, E., Ghasempour, H., & Vaezi, H., (2008). Molecular aspects of drought tolerance in bread wheat (
T. aestivum).
Pakistan Journal of Biological Science,
11(1), 118-121. doi:
10.3923/pjbs.2008.118.122.
##Gozukirmizi, N., & Karlik, E. (2017). Barley (
Hordeum vulgare L.) Improvement Past, Present and Future. In: Kanauchi, M. (Ed.). Brewing Technology. IntechOpen. doi:
10.5772/intechopen.68359.
##Grieve, C., & Grattan, S. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds.
Plant & Soil,
70(2), 303-307. doi:
10.1007/BF02374789.
##Grover, A., Singh, A., & Blumwald, E. (2012). Transgenic Strategies Toward the Development of Salt-Tolerant Plants. In: Wallender, W. W., & Tanji, K. K. (Eds.). Agricultural Salinity Assessment and Management. American Society of Civil Engineers. pp. 235-274. doi:
10.1061/9780784411698.ch08.
##Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization.
International Journal of Genomics,
2014, 701596. doi:
10.1155/2014/701596.
##Huffaker, R. C., Radin, T., Kleinkopfig, E., & Cox, E. L. (1970). Effect of mild water stress on enzyme of nitrate assimilation and of the carboxylative phase of photosynthesis in barley.
Crop Science,
10, 471- 474. doi:
10.2135/cropsci1970.0011183X001000050003x.
##Juan, M., Rivero, R. M., Romero, L., & Ruiz, J. M. (2005) Evaluation of some nutritional and biochemical indicators in selecting salt -resistant tomato cultivars.
Environmental & Experimental Botany,
54(3), 193-201. doi:
10.1016/j.envexpbot.2004.07.004.
##Khalid, A., Athar, H.-ur-R., Zafar, Z. U., Akram, A., Hussain, K., Manzour, F., Al-Qurainy, F., & Ashraf, M. (2015). Photosynthetic capacity of canola (
Brassica napus L.) plants as affected by glycinebetaine under salt stress.
Journal of Applied Botany & Food Quality,
88, 78-86. doi:
10.5073/JABFQ.2015.088.011.
##Lara, M. V., Drincovich, M. F., & Andreo, C. S. (2004). Induction of a crassulacean acid-like metabolism in the C4 succulent plant,
Portulaca oleracea L.: study of enzymes involved in carbon fixation and carbohydrate metabolism.
Plant & Cell Physiology,
45(5), 618-626. doi:
10.1093/pcp/pch073.
##Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.
Biochemical Society Transactions,
11, 591-592. doi:
10.1042/bst0110591.
##Ma, L., Liu, X., Lv, W., & Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress.
Frontiers in Plant Science,
13, 934877. doi:
10.3389/fpls.2022.934877.
##Makela, P., Peltonen-Sainio, P., Jokinen, K., Pehu, E., Setaia, H., Hinkkanen, R., & Somersalo, S. (1996). Uptake and translocation of foliar-applied glycine betaine in crop plants.
Plant Science,
121, 221-230. doi:
10.1016/S0168-9452(96)04527-X.
##Mano, Y., & Takeda, K. (1998). Genetic resources of salt tolerance in wild
Hordeum species.
Euphytica,
103, 137–141. doi:
10.1023/A:1018302910661.
##Mansour, E., Moustafa, E. S. A., Abdul-Hamid, M. I. E., Ash-shormillesy, S. M. A. I., Merwad, A. M. A., Wafa, H. A., & Igartua, E. (2021). Field responses of barley genotypes across a salinity gradient in an arid Mediterranean environment.
Agricultural Water Management,
258, 107206. doi:
10.1016/j.agwat.2021.107206.
##Martinez, J. P., Luttus, S., Schanck, A., & Banjji, M. (2004). Is osmotic adjustment required for water stress resistance in the Mediterranean shrub
Atriplex halimus L.
Journal of Plant Physiology,
16, 1041-1051. doi:
10.1016/j.jplph.2003.12.009.
##Mbarki, S., Sytar, O., Cerda, A., Zivcak, M., Rastogi, A., He, X., Zoghlami, A., Abdelly, C., & Brestic, M. (2018). Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar, V., Wani, S. H., Suprasanna, P., & Tran, L.-S. P. (Eds.). Salinity responses and tolerance in plants. Vol. 1. Springer, Cham. pp. 85-136. doi:
10.1007/978-3-319-75671-4_4.
##Mirmohammadi Meibodi, S. A. M., & Ghareyazi, B. (2002). Physiological and Breeding Aspects of Salinity Stress in Crops. Isfahan University of Technology Press. Isfahan, Iran. [In Persian].
##Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V., & Aparicio-Tejo, P. (1994). Drought induces oxidative stress in pea plants.
Planta,
194, 346-352. doi:
10.1007/BF00197534.
##Morant-Manceau, A., Pradier, E., & Tremblin, G. (2004). Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress.
Journal of Plant Physiology,
161, 25-33. doi:
10.1078/0176-1617-00963.
##Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance.
Annual Review of Plant Biology, 59, 651-681. doi:
10.1146/annurev.arplant.59.032607.092911.
##Narimani, T., Toorchi, M., Tarinejad, A. R., Mohammadi, S. A., & Mohammadi, H. (2020). Physiological and biochemical evaluation of barley (
Hordeum vulgare L.) under salinity stress.
Journal of Agricultural Science & Technology,
22(4), 1009-1021. dor:
20.1001.1.16807073.2020.22.4.11.3.
##Noreen, Z., & Ashraf, M. (2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (
Raphanus sativus L.).
Environmental & Experimental Botany,
67(2), 395-402. doi:
10.1016/j.envexpbot.2009.05.011.
##Ozturk, M., Unal, B. T., García‐Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M., (2021). Osmoregulation and its actions during the drought stress in plants.
Physiologia Plantarum,
172(2), 1321-1335. doi:
10.1111/ppl.13297.
##Pandey, M., & Penna S. (2017). Time course of physiological, biochemical, and gene expression changes under short-term salt stress in
Brassica juncea L.
The Crop Journal,
5(3), 219-230. doi:
10.1016/j.cj.2016.08.002.
##Parvaiz A., & Satyawati S. (2008). Salt stress and phyto-biochemical responses of plants – a review.
Plant, Soil and Environment,
54, 89-99. doi:
10.17221/2774-PSE.
##Patterson, B. D., MacRae, E. A., & Ferguson, I. B. (1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV).
Analytical Biochemistry,
139(2), 487-492. doi:
10.1016/0003-2697(84)90039-3.
##Poustini, K., Siosemardeh, A., & Ranjbar, M. (2007). Proline accumulation as a response to salt stress in 30 wheat (
Triticum aestivum L.) cultivars differing in salt tolerance.
Genetic Resources & Crop Evolution,
54(5), 925-934. doi:
10.1007/s10722-006-9165-6.
##Rajguru, S. N., Banks, S. W., Gosset, D. R., Cran Lucas, M., Fowler, T. E., & Millhollon, E. P. (1999). Antioxidant response to salt stress during fiber development in cotton ovules.
Journal of Cotton Science, 3, 11-18.##Rao P. S., Mishra B., & Gupta S. R. (2013). Effect of salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes.
Rice Science,
20, 284-291. doi:
10.1016/S1672-6308(13)60136-5.
##Sato, F., Yoshioka, H., Fujiwara, T., Higashio, H., Uragami, A., & Tokuda. S. (2004). Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness.
Horticultural Science,
101, 349-357. doi:
10.1016/j.scienta.2003.11.018.
##Schachtman, D. P., & Munns, R. (1992). Sodium accumulation in leaves of
Triticum species that differ in salt tolerance.
Functional Plant Biology,
19(3), 331-340. doi:
10.1071/PP9920331.
##Shahmoradi, Sh., & Tabatabaie, S. A. (2022).
Evaluation of salinity stress tolerance of cultivated barley (Hordeum vulgare L.) genotypes. Seed & Plant Journal, 38(3), 259-281. doi:
10.22092/SPJ.2023.361285.1296.
##Shakeri, E., & Emam, Y. (2018). Selectable traits in sorghum genotypes for tolerance to salinity stress.
Journal of Agricultural Science & Technology, 19, 1319-1332. dor:
20.1001.1.16807073.2017.19.6.13.8.
##Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes.
Phytochemistry,
28(4), 1057-1060.
10.1016/0031-9422(89)80182-7.
##Tavakoli, A., Ahmadi, A., & Alizade, H. (2009). Some aspects of physiological performance of sensitive and tolerant cultivars of wheat under drought stress conditions after pollination.
Iranian Journal of Crop Science,
40(1), 197-211. [In Persian].
##Tejera, N. A., Soussi, M., & Lluch, C., (2006). Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions.
Environmental and Experimental Botany,
58(1-3), 17-24. doi:
10.1016/j.envexpbot.2005.06.007.
##Tester, M., & Davenport, R. (2003). Na
+ tolerance and Na
+ transport in high plants.
Annals of Botany,
91, 503-527. doi:
10.1093/aob/mcg058.
##Trovato, M., Mattioli, R., & Costantino P. (2008). Multiple roles of proline in plant stress tolerance and development.
Rendiconti Lincei,
19, 325-346. doi:
10.1007/s12210-008-0022-8.
##Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines.
Plant Science,
151, 59-66. doi:
10.1016/S0168-9452(99)00197-1.##Venisse, J. S., Gullner, G., & Brisset, M. N. (2001). Evidence for the involvement of an oxidative stress in the initiation infection of pear by
Erwinia amylovora.
Plant Physiology,
125, 2164-2172. doi:
10.1104/pp.125.4.2164.
##Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity.
The Innovation,
1(1), 100017. doi:
10.1016/j.xinn.2020.100017.