فراتحلیل اثر تنش شوری بر عملکرد، اجزای عملکرد و صفات فیزیولوژیک در برنج (Oryza sativa L.)

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار، گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

10.22124/cr.2024.26628.1808

چکیده

مقدمه: گیاه برنج اغلب بسیار حساس به شوری در هر دو مرحله گیاهچه‌ای و زایشی است. نمک و املاح اضافی موجود در خاک یا آب آبیاری می‌تواند خسارت‌های فراوانی به گیاه وارد کند، به‌طوری که رشد طبیعی گیاه را مختل و پتانسیل عملکرد واقعی واریته‌های برنج را محدود کند. پژوهش‌های زیادی در زمینه تأثیر تنش شوری در برنج انجام شده است. اگرچه هر پژوهش به‌طور جداگانه دارای ارزش ویژه‌ای است، اما نتایج این پژوهش‌ها متفاوت بوده و جمع‌بندی جداگانه آن‌ها جهت دستیابی به یک نتیجه جامع و فراگیر دشوار خواهد بود. در روش فراتحلیل یا متاآنالیز (Meta-analysis)، تجزیه و تحلیل آماری تعداد زیادی از پژوهش‌ها انجام می‌شود و با بررسی همپوشانی نتایج مطالعات کوچک‌تر، برآیندی کلی از یافته‌های تمامی این پژوهش‌ها به‌دست می‌آید و بنابراین از اعتبار بیش‌تری برخوردار است. هدف از مطالعه حاضر، فراتحلیل نتایج مطالعات انجام شده در زمینه اثر تنش شوری در برنج بود.
مواد و روش‌ها: برای دستیابی به داده‌های لازم برای انجام مطالعه حاضر، واژه‌های کلیدی فارسی شامل «برنج»، «تنش شوری»، «عملکرد دانه»، «اجزای عملکرد»، «NaCl»، «رنگیزه‌های فتوسنتزی‌»، «میزان سدیم»، « میزان پتاسیم»، «مرحله رشد رویشی» و «مرحله رشد زایشی» و یا معادل انگلیسی این واژه‌ها از بانک‌های اطلاعاتی پژوهش‌های زراعی نظیر Magiran، SID، Elsevier و Google جستجو شد. تنش شوری نیز در دو سطح شامل تنش ملایم (4 دسی‌زیمنس بر متر) و تنش شدید (8 دسی‌زیمنس بر متر) در نظر گرفته شد. در این راستا، از 50 پژوهش بررسی شده با موضوع تأثیر تنش شوری بر رشد، عملکرد، اجزای عملکرد، محتوای عناصر و ویژگی‌های فتوسنتزی برنج، 38 مقاله انتخاب و داده‌های آن‌ها استخراج شد. برای تحلیل‌ آماری داده‌های استخراج شده و رسم نمودارهای مربوطه از نرم‌افزار جامع فراتحلیل (CMA) استفاده شد.
یافته‌های تحقیق: نتایج حاصل از آماره‌های آزمون همگنی داده‌های استخراج شده از پژوهش‌های قبلی (Q، I2 و Tau2) نشان داد که برای عملکرد دانه و تعداد خوشه در بوته در تنش شوری شدید (8 دسی‌زیمنس بر متر) و ارتفاع بوته در تنش ملایم (4 دسی‌زیمنس بر متر)، ناهمگنی بین مطالعات پایین و غیر معنی‌دار بود و از این‌رو از مدل ثابت در فراتحلیل بهره گرفته شد. در مقابل، برای سایر صفات مورد مطالعه در هر دو شرایط تنش ملایم و شدید شوری، میزان ناهمگنی بین مطالعات، بالا و معنی‌دار بود و بنابراین از مدل تصادفی استفاده شد. اندازه اثر کلی برای عملکرد دانه، ارتفاع بوته، تعداد خوشه در بوته، تعداد دانه پر در خوشه و میزان پتاسیم در هر دو شرایط تنش شدید و ملایم شوری در سمت چپ محور صفر قرار گرفت که بیانگر کاهش معنی‌دار این صفات تحت شرایط تنش بود، اما برای میزان سدیم در هر دو شرایط تنش شدید و ملایم شوری در سمت راست محور صفر قرار گرفت که نشان دهنده تأثیر افزاینده تنش شوری بر میزان سدیم گیاه بود. نتایج به‌دست آمده از اندازه اثر کلی، کاهش کلروفیل‌های a و b را در هر دو شرایط و کاروتنوئید را در شرایط تنش ملایم نشان داد. نتایج نشان داد که عملکرد دانه به‌ترتیب با کاهش 72.8 و 118.9 درصدی به‌ترتیب در سطوح تنش شوری 4 و 8 دسی‌زیمنس بر متر، حساس‌ترین و آسیب‌پذیرترین صفت نسبت به تنش بود. همچنین، کاهش تعداد خوشه در بوته در سطوح شوری 4 و 8 دسی‌زیمنس بر متر به‌ترتیب 30.42 و 35.29 درصد و کاهش تعداد دانه پر در خوشه به‌ترتیب 25.16 و 57.84 درصد بود. بنابراین، میزان کاهش تعداد خوشه در بوته در تنش شوری ملایم (4 دسی‌زیمنس بر متر) بیش‌تر از تعداد دانه پر در خوشه بود، اما با افزایش سطح شوری به 8 دسی‌زیمنس بر متر (تنش شدید)، تعداد دانه پر در خوشه تأثیر بیش‌تری پذیرفت و حساسیت بیش‌تری نسبت به تعداد خوشه در بوته در سطوح بالاتر تنش شوری نشان داد.
نتیجه‌‌گیری: نتایج این مطالعه نشان داد که افزایش تعداد خوشه‌‌های بارور و تعداد دانه پر در خوشه، سطوح بالاتر پتاسیم و پایین‌تر سدیم، کاهش نسبت +Na+/K، حفظ میزان رنگیزه‌های کلروفیل در حد مناسب و جلوگیری از تخریب آن‌ها، افزایش تجمع پرولین، افزایش فعالیت آنزیم‌های کاتالاز و گایاکول پراکسیداز، جلوگیری از تخریب غشای سلولی و کاهش نشت یونی، معیارهای انتخاب مناسبی برای ارزیابی تحمل به شوری و شناسایی ژنوتیپ‌های برنج متحمل هستند. همچنین، رقم‌های Xudao9، Nagdong، Pokkali، غریب سیاه ریحانی، زاینده‌رود، سنگ طارم و یک لاین موتانت از رقم نعمت، به‌عنوان منابع ژنتیکی متحمل به شوری بودند و بنابراین می‌توان از آن‌ها در برنامه‌های به‌نژادی تحمل به شوری در برنج استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Meta-analysis of the effect of salinity stress on grain yield, yield components and physiological traits in rice (Oryza sativa L.)

نویسنده [English]

  • Peyman Sharifi
Associate Professor, Department of Agronomy and Plant Breeding, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده [English]

Introduction
Rice is often very sensitive to salinity in both seedling and reproductive stages. Excess salt and mineral salts in the soil or irrigation water can cause great damage to the plant, disrupting the natural growth of the plant and limiting the actual performance potential of rice varieties. Many researches have been conducted on the effect of salinity stress on rice. Although each research separately has a special value, the results of these researches are different and it will be difficult to summarize them separately in order to obtaine a general and comprehensive result. In the meta-analysis method, statistical analysis of a large number of researches is performed and by evaluating the overlap of the results of smaller studies, a general summary is obtained from the findings of all studies. Therefore, the results of the meta-analysis method has more validity. The purpose of the current study was to meta-analyze the results of the researches conducted on the effect of salinity stress on rice.
Materials and methods
To obtain the necessary data for the present study, the Persian keywords “rice”, “salinity stress”, “grain yield”, “yield components”, “NaCl”, “photosynthetic pigments”, “sodium content”, “potassium content”, “vegetative growth stage” and “reproductive growth stage” or their English equivalents were searched from the agricultural research information banks, such as Magiran, SID, Elsevier and Google. Salinity stress was also considered at two levels including mild stress (4 dS.m-1) and severe stress (8 dS.m-1). Out of the 50 reviewed studies on the effect of salinity stress on growth, yield, yield components, content of elements and photosynthetic characteristics of rice, 38 articles were selected and their data were extracted. Comprehensive meta-analysis (CMA) software was used for statistical analysis of the extracted data and drawing the relevant graphs.
Research findings
The results of the homogeneity test statistics of data extracted from previous studies (Q, I2 and Tau2) showed that the heterogeneity between the studies for grain yield and panicle number per plant under severe salinity stress (8 dS.m-1) and plant height under mild stress (4 dS.m-1) was low and non-significant, therefore the fixed model was used in the meta-analysis. However, random model was used for other traits in both salinity stress conditions due to the heterogeneity between studies. Overall effect size for grain yield, plant height, panicles per plant, filled grains per panicle and potassium content were on the left side of the zero axis under both severe and mild stress conditions, indicating a significant reduction of these traits under salinity stress. But, the overall effect size for sodium content in both severe and mild salinity stresses were on the right side of the zero axis, which indicated the increasing effect of salinity stress on sodium content. The results of the overall effect size showed a decrease in chlorophylls a and b under both salinity stress conditions and carotenoids in mild stress. The results showed that grain yield with a decrease of 72.8 and 118.9 percent at the stress levels of 4 and 8 dS.m-1, respectively, was the most sensitive and vulnerable trait to salinity stress. Also, the decrease in the number of panicles per plant was 30.42 and 35.29 percent, and in the number of filled grains per panicle was 25.16 and 57.84 percent at salinity levels of 4 and 8 dS.m-1, respectively. This finding showed that the decrease in the number of panicles per plant at mild salinity stress was more than the number of filled grains per panicle, while with the increasing of salinity level to 8 dS.m-1 (sever stress), the number of filled grains per panicle was more affected and showed more sensitivity to high levels of salinity stress compared to the number of panicles per plant.
Conclusion
The results of this study showed that increasing the number of fertile panicles and the number of filled grains per panicle, higher levels of potassium, lower levels of sodium, reducing the ratio of Na+/K+, maintaining the amount of chlorophyll pigments at the optimal level and preventing their destruction, increasing proline accumulation and activity of catalase and guaiacol peroxidase enzymes, prevention of cell membrane destruction and reduction of ion leakage, were suitable criteria for assessing salinity tolerance and identifying rice tolerant genotypes. The varieties Gharib Siah Reihani, Xudao9, Nagdong, Pokkali, Zayandehroud and Seng-e Tarom as well as a mutant line of Nemat variety were salinity tolerant genetic resources and can be used in breeding programs of salinity tolerance in rice.

کلیدواژه‌ها [English]

  • Accumulation plot
  • Funnel plot
  • Homogeneity
  • Potassium
  • Sodium
Adams Iii, W. W., Demmig-Adams, B., Rosenstiel, T. N., Brightwell, A.K., & Ebbert, V. (2002). Photosynthesis and photoprotection in overwintering plants. Plant Biology, 4, 545-557. doi: 10.1055/s-2002-35434.##Afkhami Ghadi, A., Habibzadeh, F., & Hosseini, S. J. (2021). Evaluation of rice genotypes from crossing based on salinity stress tolerance indices. Journal of Crop Breeding, 13(39), 108-121. [In Persian]. doi: 10.52547/jcb.13.39.108.##Ali, Y., Aslam, Z., Ashraf, M. Y., & Tahir, G.R. (2004). Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology, 1(3), 221-225. doi: 10.1007/BF03325836.##Amiri, E., Rezaei, M., & Shirshahi, F. (2019). Performance of the aquacrop model under deficit and saline irrigation management of rice. Water Management in Agriculture, 6(1), 13-22. [In Persian].##Anshori, M. F., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Ardie, S. W. (2022). Salinity tolerance selection of doubled-haploid rice lines based on selection index and factor analysis. AIMS Agriculture & Food, 7(3), 520-535. doi: 10.3934/agrfood.2022032.##Basra, A. S., & Basa, R. K. (1997). Mechanisms of Environmental Stress Resistance in Plants. Harwood Academic Press. 430 p.##Bhusan, D., Das, D. K., Hossain, M., Murata, Y., & Hoque, M. A. (2016). Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of praline. Australian Journal of Crop Science, 10(1), 50-56.##Biabani, A., Sabouri, H., & Nakhzari, A. (2012). Study of yield components of rice cultivars under salinity stress condition. Journal of Plant Production, 19(4),173-186. [In Persian].##Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2005). Comprehensive meta-analysis software (CMA). Compr. Meta-Anal. Version 2.##Chandramohanan, K. T., Radhakrishnan, V. V., Abhilash Joseph, E., & Mohanan, K. V. (2014). A study on the effect of salinity stress on the chlorophyll content of certain rice cultivars of Kerala state of India. Agriculture, Forestry & Fisheries, 3(2), 67-70. doi: 10.11648/j.aff.20140302.13.##Channa, G. S., Mahar, A. R., Rajpar, I., Memon, A. H., Saand, M. A., Mirbahar, A. A., Majid, A., Lal, S., & Sirohi, M. H. (2019). Effect of salinity on growth, yield and ion contents of rice (Oryza sativa L.) genotypes. International Journal of Biosciences, 14(5), 192-204. doi: 10.12692/ijb/14.5.192-204.##Djanaguiraman, M., & Ramadass, R. (2004). Effect of salinity on chlorophyll content of rice genotypes. Agricultural Science Digest, 24(3), 178-181.##Eckardt, N. A. (2009). A new chlorophyll degradation pathway. The Plant Cell, 21(3), 700.
doi: 10.1105/tpc.109.210313.##Fallah, A., Bagheri, L., & Farahmandfar, E. (2012). Effect of salinity on different stages of rice growth. 15th National Conference on Rice, 20-21 February, Sari Agricultural Science & Natural Resources University. [In Persian].##Farooq, M., Park, J. R., Jang, Y. H., Kim, E. G., & Kim, K. M. (2021). Rice cultivars under salt stress show differential expression of genes related to the regulation of Na+/K+ balance. Frontiers in Plant Science, 12: 680131. doi: 10.3389/fpls.2021.680131.##Flowers, T. J, Hajibagheri, M. A., & Yeo, A. R. (1991). Ion accumulation in the cell walls of rice plants growing under saline conditions: Evidence for the Oertli hypothesis. Plant, Cell & Environment, 14(3), 319-325. doi: 10.1111/j.1365-3040.1991.tb01507.x.##Forough, M., Navbpour, S., Ebrahimie, E., Ebadi, A. A., & Kiani, D. (2018). Evaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice. Journal of Plant Molecular Breeding, 6(2), 27-37. doi: 10.22058/JPMB.2019.114746.1192.##Gavaghan, D. J., Moore, R. A., & McQuay, H. J. (2000). An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data. Pain, 85(3), 415-424. doi: 10.1016/S0304-3959(99)00302-4.##Ghadirnezhad Shiade, S. R., Esmaeili, M., Pirdashti, H., & Nematzadeh, G. A. (2020). Physiological and biochemical evaluation of sixth generation of rice (Oryza sativa L.) mutant lines under salinity stress. Journal of Plant Process & Function, 9(3), 57-72. [In Persian]. dor: 20.1001.1.23222727.1399.9.35.21.2.##Gharavi Baigi, M., Yaghoubian, Y., & Pirdashti, H. (2018). Meta-analysis of salinity stress effects on rice (Oryza sativa L.): A case study in Iran. 18th National Rice Conference, Sari, Iran. [In Persian].##Gurevitch, J., & Hedges, L. V. (1999). Statistical issues in ecological meta-analyses. Ecology, 80(4), 1142-1149. doi: 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2.##Gurevitch, J., Morrow, L. L., Wallace, A., & Walsh, J. S. (1992). A meta-analysis of competition in field experiments. The American Naturalist, 140(4), 539-572. doi: 10.1111/j.1469-8137.2007.02277.x.##Habibollahi, N, Mahdiyeh, M., & Amirjani, M. R. (2012). Effect of salt stress on growth, proline, antioxidant enzyme activity and photosystem II efficiency in salt-sensitive and -tolerant rice cultivars. Journal of Plant Biological Sciences, 4(13), 85-96. [In Persian]. dor: 20.1001.1.20088264.1391.4.13.8.3.##Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150-1156. doi: https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2.##Higgins, J., & Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Available from www.handbook.cochrane.org.##Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557-560. doi: 10.1136/bmj.327.7414.557.##Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539-1558. doi: 10.1002/sim.1186.##Hosseini, S. J., Tahmasebi, Z., & Pirdashti, H. (2012). Screening of rice (Oryza sativa L.) genotypes for NaCl tolerance at early seedling stage. International Journal of Agronomy & Plant Production, 3(8), 274-283.##Irakoze, W., Prodjinoto, H., Nijimbere, S., Rufyikiri, G., & Lutts, S. (2020). NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy, 10(6), 864. doi: 10.3390/agronomy10060864.##Kamrava, S., Babaeaian Jelodar, N., & Bagheri, N. (2021). The effect of salinity stress on the amount of proline, chlorophyll and sodium and potassium ions in different rice cultivars in hydroponic environment. Environmental Stresses in Crop Sciences, 14(3), 805-821. [In Persian]. doi: 10.22077/escs.2020.3078.1791.##Kibria, M. G., Hossain, M., Murata, Y., & Hoque, M. A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science, 24(3), 155-162. doi: 10.1016/j.rsci.2017.05.001.##Majidi-Mehr, A., & Amiri-Fahliani, R. (2021). Evaluation of reaction of some rice (Oryza sativa L.) genotypes to salinity stress at seedling stage. Environmental Stresses in Crop Sciences, 13(4), 1293-1306. [In Persian]. doi: 10.22077/escs.2020.2468.1649.##Mirdar Mansuri, R., Shobbar, Z. S., Babaeian Jelodar, N., Ghaffari, M. R., Mohammadi, S. M., & Daryani, P. (2020). Salt tolerance involved candidate genes in rice: An integrative meta-analysis approach. BMC Plant Biology, 20, 452. doi: 10.1186/s12870-020-02679-8.##Mirdar Mansuri, S., Babaeian Jelodar, N., & Bagheri, N. (2014). Effects of NaCl stress on grain yield and their components in Iranian rice genotypes. Journal of Crop Breeding, 6(14), 67-83. [In Persian]. dor: 20.1001.1.22286128.1393.6.14.6.7.##Mirmohammadi, S. A. M., & Ghareyazi, B. (2002). Physiological Aspects and Breeding for Salinity Stress in Plants. Esfahan Industrial University Press, Iran. 274 p. [In Persian].##Mohammadi-Nejad, G., Singh, R. K., Arzani, A., Rezaie, A. M., Sabouri, H., & Gregorio, G. B. (2010). Evaluation of salinity tolerance in rice genotypes. International Journal of Plant Production, 4(3), 199-208. doi: 10.22069/IJPP.2012.696.##Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161-73. doi: 10.1093/aob/mcm052.##Mortezainezhad, F., Khavarinezhad, R., & Emami, M. (2006). Study of some parameters of yield and praline in rice plants under NaCl Salinity stress. Agroecology Journal, 2(2), 65-70. [In Persian].##Musavizadeh, Z. S., Najafi Zarini, H., Hashemi-Petroudi, S. H., & Kazemitabar, S. K. (2018). Assessment of proline, chlorophyll and malondialdehyde in sensitive and tolerant rice (Oryza sativa L.) cultivars under salt stress conditions. Journal of Crop Breeding, 10(25), 28-35. [In Persian]. doi: 10.29252/jcb.10.25.28.##Nasrudin, N., Isnaeni, S., & Fahmi, P. (2022). The effect of high salt stress on the agronomic, chlorophyll content, and yield characteristics of several rice varieties. IOP Conference Series: Earth & Environmental Science, 995, 012028. doi: 10.1088/1755-1315/995/1/012028.##Nguyen, T.C., & Nguyen, T. L. (2007). Identification of some promising varieties for salinity soil and phosphorous deficient areas in the Mekong Delta. Omonrice, 15, 179-184.##Orooj, A., & Ashraf, M. (2006). Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum spraque). Journal of Arid Environments, 64(2), 209-220. doi: 10.1016/j.jaridenv.2005.04.015.##Papp, J. C., Ball, M. C., & Terry, N. (1983). A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (Sugar beet). Plant, Cell and Environment, 6(8), 675-677. DOI: 10.1111/1365-3040.ep11589273.##Rafaliarivony, S., Ranarijaona, H. L. T., Rasoafalimanana, M., Radanielina, T., & Wissuwa, M. (2022). Evaluation of salinity tolerance of lowland rice genotypes at the reproductive stage. BioRxiv, 1-25. doi: 10.1101/2022.08.22.504861.##Rezaei, M., Davatgar, N., Khaledian, M. R., Ashrafzadeh, A., Kavossi, M., & Zavareh, M. (2012). Study of the effect of saline water on rice yield under water stress conditions. Journal of Irigation Sciences and Enginering, 36(1), 81-88. [In Persian].##Ried, K. (2006). Interpreting and understanding meta-analysis graphs: A practical guide. Australian Family Physician, 35(8), 635-638.##Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. doi: 10.1016/j.copbio.2013.12.004.##Sadradini, A. A., & Salahshour Dalivand, F. (2013). The effect of salinity stress and irrigation regimes on yield and water productivity in cracked paddy rice field. Cereal Research2(3), 193-208. [In Persian]. dor: 20.1001.1.22520163.1391.2.3.3.7.##Saedipour, S. (2015). Response of two Indica rice varieties to salt stress. Journal of Plant Physiology and Breeding, 5(2), 1-10.##Saeidzadeh, F., & Taghizadeh, R. (2019). Effect of salinity stress on rice varieties (Oryza Sativa L.) in seedling and reproductive stages under hydroponic culture conditions. Journal of Applied Biology, 32(2), 93-108. [In Persian]. doi: 10.22051/jab.2019.4327.##Saeidzadeh, F., Taghizadeh, R., & Gurbanov, E. (2016). Evaluation of salinity tolerance in some of rice genotypes under west region of Guilan province (Astara). Cereal Research, 6(1), 31-41. [In Persian]. dor: 20.1001.1.22520163.1395.6.1.3.1.##Salahshour Dalivand, F., Sadradini, A. A., Nazemi, A. H., Davatgar, N., & Neyshabouri, M. R. (2014). Simulation of simultaneous effect of salinity and drought stresses on grain yield of rice cv. Hashemi. Iranian Journal of Crop Sciences, 15(4), 320-336. [In Persian]. dor: 20.1001.1.15625540.1392.15.4.3.7.##Senguttuvel, P., Vijayalakshmi, C., Thiyagarajan, K., Kannanbapu, J. R., Kota, S., Padmavathi, G., & Viraktamath, B. C. (2014). Changes in photosynthesis, chlorophyll fluorescence, gas exchange parameters and osmotic potential to salt stress during early seedling stage in rice (Oryza sativa L). SABRAO Journal of Breeding & Genetics, 46(1), 120-135.##Shakeela, B. S., Chachar, Q. I., Chachar, S. D., Solangi, A. B., & Solangi, J. A. (2016). Effect of salinity (NaCl) stress on physiological characteristics of rice (Oryza Sativa L.) at early seedling stage. International Journal of Agricultural Technology, 12(2), 263-279.##Shankar A., Choudhary, O. P., Dharminder, B. B., & Kuldeep, S. (2021). Effect of EMS induced mutation in rice cultivar Nagina 22 on salinity tolerance. BioRxiv, 1-20. doi: 10.1101/2021.08.03.455004.##Sharifi, P. (2012a). Diallel analysis to study genetic parameters of rice salinity tolerance taits at germination stage. SABRAO Journal of Breeding & Genetics, 44(1) 42-57.##Sharifi, P. (2012b). Graphic analysis of salinity tolerance traits of rice (Oryza sativa L.) using biplot method. Cereal Research Communications, 40(3), 416-424. doi: 10.1556/CRC.40.2012.3.3.##Sharifi, P. (2013). Evaluating the effect of salinity stresses on some of the traits of rice at the germination stage. Plant & Ecosystem, 9(34-1), 31-40. [In Persian].##Sharifi, P. (2020). Evolution, domestication, breeding methods and the latest breeding findings in rice. Publications of Agricultural & Natural Resources Engineering Organization of Iran. 254 p. [In Persian].##Sharifi, P., Safari Motlagh, M. R., & Aminpanah, H. (2012). Diallel analysis for salinity tolerance in rice traits at germination stage. African Journal of Biotechnology, 11(14), 3276-3283. doi: 10.5897/AJB11.2627.##Singh, D. P., & Sarkar, R. K. (2014). Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Functional Plant Biology, 41(7), 727-736. doi: 10.1016/j.rsci.2016.08.008.##Siringam, K., Juntawong, N., Cha-um, S., Boriboonkaset, T., & Kirdmanee, C. (2012). Salt tolerance enhancement in indica rice (Oryza sativa L. spp. Indica) seedlings using exogenous sucrose supplementation. Plant Omics Journal, 5(1), 52-59.##Sonone, M., Mane, A., Sawardekar, S., & Kunkerkar, R. (2023). Consequences of salt stress on chlorophyll pigments of rice genotypes. The Pharma Innovation Journal, 12(6), 3272-3275.##Taratima, W., Chomarsa, T., & Maneerattanarungroj, P. (2022). Salinity stress response of rice (Oryza sativa L. cv. Luem Pua) calli and seedlings. Scientifica (Cairo), 5616683. doi: 10.1155/2022/5616683.##Taratima, W., Chaisuwan, S., Plaikhuntod, K., Maneerattanarungroj, P., Kunpratum, N., & Trunjaruen, A. 2023. Salinity tolerance evaluation of rice (Oryza sativa L.) ‘Tubtim Chumphae’ seedling and early vegetative stage. Asian Journal of Plant Sciences, 22(2), 250-259. doi: 10.3923/ajps.2023.250.259.##Valkama, E., Uusitalo, R., Ylivainio, K., Virkajarvi, P., & Turtola, E. (2009). Phosphorus fertilization: A meta-analysis of 80 years of research in Finland. Agriculture, Ecosystems & Environment, 130(3-4), 75-85. doi: 10.1016/j.agee.2008.12.004.##Zeng, L., Shannon, M. C., & Grieve, C. M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 127, 235-245. doi: 10.1023/A:1020262932277.##Zhang, R., Wang, Y., Hussain, S., Yang, S., Li, R., Liu, S., Chen, Y., Wei, H., Dai, Q., & Hou, H. (2022). Study on the effect of salt stress on yield and grain quality among different rice varieties. Front in Plant Scince, 13, 918460. doi: 10.3389/fpls.2022.918460.##Zhang, Y., Fang, J., Wu, X., & Dong, L. (2018). Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biology, 18, 375. doi: 10.1186/s12870-018-1586-9.##Zheng, C., Liu, C., Liu, L., Tan, Y., Xiabing, S., Yu, D., Sun, Z., Sun, X., Chen, J., Yuan, D., & Duan, M. (2023). Effect of salinity stress on rice yield and grain quality: A meta-analysis. European Journal of Agronomy, 144, 126765. doi: 10.1016/j.eja.2023.126765.##