استفاده از بای‌پلات‌های دوگانه و سه‌گانه جهت تعیین ژنوتیپ‌های مطلوب گندم پاییزه از لحاظ صفات ریشه‌ای، عملکرد و اجزای عملکرد تحت شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار پژوهش، موسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، مراغه، ایران

چکیده

مقدمه: انتخاب و اصلاح برای افزایش عملکرد همیشه یکی از اهداف اصلی اصلاح‌گران گندم بوده است. از آنجا که عملکرد گندم دیم وابسته به رطوبت ذخیره شده در خاک در طول دوره بارش است، بنابراین، ارقام مختلف گیاهان زراعی باید برای هر منطقه از لحاظ پتانسیل استفاده از آب ذخیره شده در خاک در دوره‌های طولانی مدت خشک‌سالی ارزیابی شوند. ریشه‌ها اصلی‌ترین اندام‌ها برای پاسخ، درک و حفظ عملکرد در شرایط بروز خشکی بوده که به نیمه پنهان گیاه معروف می‌باشند و عملکرد آن‌ها نقش مهمی در رشد و عملکرد گیاهان دارد. از طرفی انتخاب بر اساس صفات متعدد، شایستگی ارقام زراعی را برای کشاورزان افزایش می‌دهد. بای‌پلات‌های دوگانه ژنوتیپ × صفت (GT) و سه‌گانه ژنوتیپ × عملکرد × صفت (GYT) از روش‌های گرافیکی هستند که برای ارزیابی و شناسایی ژنوتیپ‌های مطلوب از لحاظ چند صفت ارائه شده‌اند. هدف از این پژوهش، استفاده از روش GYT برای بررسی روابط بین صفات ریشه‌ای و عملکرد و اجزای عملکرد، رتبه‌بندی ارقام و لاین‌های پیشرفته گندم و گزینش ژنوتیپ‌های برتر بر اساس مجموعه صفات ریشه‌ای مؤثر بر عملکرد دانه تحت شرایط دیم بود.
مواد و روش‌ها: مواد گیاهی این تحقیق، 24 رقم گندم نان شامل 11 رقم گندم دیم پاییزه به‌همراه 13 لاین پیشرفته گندم نان بود. ژنوتیپ‌های مورد مطالعه در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه زنجان طی دو سال زراعی 97-1396 و 98-1397 در شرایط دیم ارزیابی شدند. صفات اندازه‌گیری شده شامل طول ریشه، قطر ریشه، حجم ریشه، سطح ریشه، زیست‌توده ریشه، تعداد دانه در سنبله، وزن هزار دانه، تعداد سنبله در متر مربع و عملکرد دانه (گرم در متر مربع) بودند. برای تجزیه و تحلیل آماری، ابتدا داده‌ها استاندارد و سپس تجزیه به مولفه‌های اصلی انجام شد. از بای‌پلات‌های GT و GYT به‌منظور شناسایی ارتباط بین صفات ریشه و عملکرد و اجزای عملکرد و انتخاب بهترین ژنوتیپ‌های گندم بر اساس صفات متعدد استفاده شد.
یافته‌های تحقیق: نتایج نشان داد که استفاده از بای‌پلات GYT کارایی بیش‌تری نسبت به بای پلات GT دارد. بر اساس بای‌پلات GYT و شاخص برتری، ژنوتیپ شماره 2 با در نظر گرفتن تمامی ترکیبات عملکرد- صفت به‌جز عملکرد- طول و سطح ریشه در عمق بیش‌تر از 25 سانتی‌متر، به‌عنوان ژنوتیپ برتر مشخص شد. ژنوتیپ‌های شماره 10 و 11 ژنوتیپ‌های مطلوب از لحاظ ترکیب عملکرد با طول و سطح ریشه در عمق بیش از 25 سانتی‌متر بودند. در روش GYT صفات عمق نفوذ ریشه، تعداد سنبله در متر مربع، قطر ریشه تا عمق 25 سانتی‌متر و به‌دنبال آن‌ها وزن هزار دانه، حجم، طول، وزن خشک و سطح ریشه تا عمق 25 سانتی‌متر و قطر ریشه در عمق بیش از 25 سانتی‌متر به‌عنوان مهم‌ترین صفات برای تعیین پیشرفت ژنتیکی در برنامه‌های به‌نژادی شناسایی شدند. در مجموع با در نظر گرفتن این صفات، ژنوتیپ شماره 2 نزدیک‌ترین ژنوتیپ به ژنوتیپ ایده‌آل بود و می‌تواند به‌عنوان بهترین ژنوتیپ این آزمایش معرفی شود.
نتیجه‌گیری: نتایج این تحقیق نشان داد که پتانسیل بهبود ژنتیکی همزمان عملکرد دانه و صفات ریشه به‌ویژه در قسمت سطحی خاک در ژنوتیپ‌های گندم مورد مطالعه وجود دارد. با توجه به نتایج به‌دست آمده از این آزمایش، می‌توان گفت که روش گرافیکی GYT یک روش جدید کارآمد و کاربردی جهت شناسایی ژنوتیپ‌های برتر بر اساس صفات متعدد در برنامه‌های اصلاحی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using double and triple biplots for identification of superior winter wheat genotypes in term of root traits, yield and yield components under rainfed conditions

نویسندگان [English]

  • Ramin Sadegh Ghol Moghadam 1
  • Jalal Saba 2
  • Farid Shekari 2
  • Mozaffar Roostaei 3
1 Graduate Ph.D., Department of Plant Genetics and Production, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Professor, Department of Plant Genetics and Production, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Research Associate Professor, Dryland Agricultural Research Institute (DARI), Agricultural Research Education and Extension Organization (AREEO), Maragheh, Iran
چکیده [English]

Introduction
Selection and breeding for yield enhancement has always been one of the main goals of wheat breeders. Since the yield of rainfed wheat depends on the moisture stored in the soil during the rainy season, therefore, different crop varieties should be evaluated in terms of their potential to use the water stored in the soil during long periods of drought in each region. Roots are the main organs to respond, understand and maintain yield in drought conditions, which are known as the hidden half of the plant and their function plays an important role in the growth and yield of plants. On the other hand, selection based on multiple traits increases the suitability of crop varieties for farmers. Genotype × trait (GT) and genotype × yield × trait (GYT) biplots are graphical methods that have been proposed to evaluate and identify favorable genotypes in terms of multiple traits. The objective of the current study was to use the GYT method to investigate the relationships between root traits and yield and yield components, to rank wheat varieties and advanced lines, and to select superior genotypes based on a set of root traits affecting grain yield under rainfed conditions.
Materials and methods
In plant materials of this study were 24 bread wheat genotypes including 11 rainfed winter wheat varieties along with 13 advanced lines. The studied genotypes were evaluated in a randomized complete block design with three replications in the research field of Faculty of Agriculture, Zanjan University, Zanjan, Iran, during two cropping years, 2016-2017 and 2017-2018, under rainfed conditions. The measured traits included root length, root diameter, root volume, root area, root biomass, number of grains per spike, 1000-kernel weight, number of spikes per m2, and grain yield (g.m-2). For statistical analysis, the data were first standardized and then principal component analysis was performed. GT and GYT biplots were used to identify the relationship between root traits and grain yield and yield components and select the best wheat genotypes based on multiple traits.
Research findings
The results showed that the use of GYT biplot is more efficient than GT biplot. Based on GYT biplot and superiority index, genotype No. 2 was identified as the superior genotype in term of all yield-trait combinations except yield- root length and area combination at a depth of more than 25 cm. Genotypes No. 10 and 11 were the most favorable genotypes for combination of yield with root length and area at a depth of more than 25 cm. In the GYT method, root penetration depth, number of spikes per m2, root diameter up to 25 cm depth, followed by 1000-kernel weight, root volume, root length, root dry weight and root area up to 25 cm depth and root diameter at a depth of more than 25 cm were identified as the most important traits for determining the genetic progress in breeding programs. In total, considering these traits, genotype No. 2 was the closest genotype to the ideal genotype and can be introduced as the best genotype in this study.
Conclusion
The results of this research showed that there is a potential for simultaneous genetic improvement of grain yield and root traits especially in the surface part of the soil in the studied wheat genotypes. Based on the obtained results of this experiment, it can be said that the GYT graphic method is a new efficient and practical method to identify superior genotypes based on multiple traits in breeding programs.

کلیدواژه‌ها [English]

  • Genotype × yield × trait biplot
  • Genotype × trait biplot
  • Multi-trait selection
  • Superiority index
Bakhshi, B., Amiri Oghan, H., Rameeh, V., Zeinalzadeh Tabrizi, H., Askari, A., Faraji, A., Ghodrati, G., Fanaei, H. R., Danaei, A. K., Khatoon Kazerani, N., Payghamzadeh, K., Kiani, D., Sadeghi, H., Shariati, F., Dalili, A., & Aghajani Nasab Afrouzi, M. A. (2023). Trait profiling and genotype selection in oilseed rape using genotype by trait and genotype by yield×trait approaches. Food Science & Nutrition, 11(6), 3083-3095. doi: 10.1002/fsn3.3290.##Bengough, A. G. (2012). Root elongation is restricted by axial but not by radial pressures: So what happens in field soil? Plant & Soil, 360(1), 15-18. doi: 10.1007/s11104-012-1428-8.##Chen, Y., Palta, J., Prasad, P. V. V., & Siddique, K. H. M. (2020). Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 20(1), 185. doi: 10.1186/s12870-020-02390-8.##Colombi, T., Herrmann, A. M., Vallenback, P., & Keller, T. (2019). Cortical cell diameter is key to energy costs of root growth in wheat. Plant Physiology, 180(4), 2049-2060. doi: 10.1104/pp.19.00262.##Colombi, T., Kirchgessner, N., Walter, A., & Keller, T. (2017). Root tip shape governs root elongation rate under increased soil strength. Plant Physiology, 174(4), 2289-2301. doi: 10.1104/pp.17.00357.##Ehdaie, B., Layne, A. P., & Waines, J. G. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186, 219-232. doi: 10.1007/s10681-011-0585-9.##Faheem, M., Arain, S., Sial, M. A., Laghari, K. A., & Qayyum, A.(2023). Genotype by yield×trait (GYT) biplot analysis: A novel approach for evaluating advance lines of durum wheat. Cereal Research Communications, 51(2), 447-456. doi: 10.1007/s42976-022-00298-7.##Faheem, M., Laghari, K. A., Khalil-Ur Rehman, M., Arain, S., & Sial, M. A. (2021). Selection of wheat ideotype based on multiple traits using genotype by yield-trait approach. International Journal of Agriculture & Biology, 25(6), 1367-1374. doi: 10.17957/IJAB/15.1799.##FAO. (2023). Food and agricultural data. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online: http://www.fao.org/faostat/en/#home.##Fradgley, N., Evans, G., Biernaskie, J. M., Cockram, J., Marr, E. C., Oliver, A. G., Ober, E., & Jones, H. (2020). Effects of breeding history and crop management on the root architecture of wheat. Plant & Soil, 452(1), 587-600. doi: 10.1007/s11104-020-04585-2.##Friedli, C. N., Abiven, S., Fossati, D., & Hund, A. (2019). Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica, 215(4), 85. doi: 10.1007/s10681-019-2404-7.##Gholizadeh, A., & Ghaffari, M. (2023). Genotype by yield×trait (GYT) biplot analysis: A novel approach for phenotyping sunflower single cross hybrids based on multiple traits. Food Science & Nutrition, 11(10), 5928-5937. doi: 10.1002/fsn3.3524.##Guo, X., Svane, S. F., Füchtbauer, W. S., Andersen, J. R., Jensen, J., & Thorup-Kristensen, K. (2020). Genomic prediction of yield and root development in wheat under changing water availability. Plant Methods, 16(1), 90. doi: 10.1186/s13007-020-00634-0.##Gupta, K., Gupta, B., Ghosh, B., & Sengupta, D. N. (2012). Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress. Acta Physiologiae Plantarum, 34(1), 29-40. doi: 10.1007/s11738-011-0802-0.##Hassani, M., Mahmoudi, S. B., Saremirad, A., & Taleghani, D. (2024). Genotype by environment and genotype by yield×trait interactions in sugar beet: Analyzing yield stability and determining key traits association. Scientific Reports, 13(1), 23111. doi: 10.1038/s41598-023-51061-9.##Hu, C., Ding, M., Qu, C., Sadras, V., Yang, X.-Y., & Zhang, S. (2015). Yield and water use efficiency of wheat in the Loess Plateau: Responses to root pruning and defoliation. Field Crops Research, 179, 6-11. doi: 10.1016/j.fcr.2015.03.026.##Jia, Z., Liu, Y., Gruber, B. D., Neumann, K., Kilian, B., Graner, A., & von Wirén, N. (2019). Genetic dissection of root system architectural traits in spring barley. Frontiers in Plant Science, 10, 400. doi: 10.3389/fpls.2019.00400.##Jin, K., Shen, J., Ashton, R. W., Dodd, I. C., Parry, M. A. J., & Whalley, W. R. (2013). How do roots elongate in a structured soil? Journal of Experimental Botany, 64(15), 4761-4777. doi: 10.1093/jxb/ert286.##Kokko, E. G., Volkmar, K. M., Gowen, B. E., & Entz, T. (1993). Determination of total root surface area in soil core samples by image analysis. Soil & Tillage Research, 26(1), 33-43. doi: 10.1016/0167-1987(93)90084-3.##Kamoshita, A., Zhang, J., Siopongco, J., Sarkarung, S., Nguyen, H. T., & Wade, L. J. (2002). Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Science, 42(1), 255-265. doi: 10.2135/cropsci2002.2550.##Kano-Nakata, M., Nakamura, T., Mitsuya, S., & Yamauchi, A. (2019). Plasticity in root system architecture of rice genotypes exhibited under different soil water distributions in soil profile. Plant Production Science, 22, 1-9. doi: 10.1080/1343943X.2019.1608836.##Karahan, T., & Akgün, I. (2020). Selection of barley (Hordeum vulgare) genotypes by GYT (genotype×yield×trait) biplot technique and its comparison with GT (genotype×trait). Applied Ecology & Environmental Research, 11(8), 1347-1359. doi: 10.15666/aeer/1801_13471359.##Kendal, E. (2019). Comparing durum wheat cultivars by genotype×yield×trait and genotype×trait biplot method. Chilean Journal of Agricultural Research, 79(4), 512-522. doi: 10.4067/S0718-58392019000400512.##Kendal, E. (2020). Evaluation of some barley genotypes with geotype by yield×trait (GYT) biplot method. Agriculture & Forestry, 66(2), 137-150. doi: 10.17707/AgricultForest.66.2.13.##Manschadi, A. M., Hammer, G. L., Christopher, J. T., & DeVoil, P. (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant & Soil, 303, 115-129. doi: 10.1007/s11104-007-9492-1.##Manske, G., & Vlek, P. (2002). Root architecture-Wheat as a model plant. In: Waisel, Y., Eshel, A., & Kafkafi, U. (Eds.). Plant Roots: The Hidden Half. Marcel Dekker Inc., New York. pp. 249-259. doi: 10.1201/9780203909423.ch15.##Merrick, L. F., Glover, K. D., Yabwalo, D., & Byamukama, E. (2020). Use of genotype by yield×trait (GYT) analysis to select hard red spring wheat with elevated performance for agronomic and disease resistance traits. Crop Breeding, Genetics & Genomics, 2(2), e200009. doi: 10.20900/cbgg20200009.##Mohammadi, R. (2019). Genotype by yield×trait biplot for genotype evaluation and trait profiles in durum wheat. Cereal Research Communications, 47(3), 541-551. doi: 10.1556/0806.47.2019.32.##Mohammadi, R., & Geravandi, M. (2024). Multi-trait selection for agronomic performance and drought tolerance among durum wheat genotypes evaluated under rainfed and irrigated environments. Experimental Agriculture, 60, e3. doi: 10.1017/S0014479723000273.##Oberholzer, S., Prasuhn, V., & Hund, A. (2017). Crop water use under Swiss pedoclimatic conditions - Evaluation of lysimeter data covering a seven-year period. Field Crops Research, 211, 48-65. doi: 10.1016/j.fcr.2017.06.003.##Palta, J. A., Chen, X., Milroy, S. P., Rebetzke, G. J., Dreccer, M. F., & Watt, M. (2011). Large root systems: Are they useful in adapting wheat to dry environments? Functional Plant Biology, 38(5), 347-354. doi: 10.1071/FP11031.##Passioura, J. B. (1983). Roots and drought resistance. In: Stone, J. F., & Willis, W. O. (Eds.). Developments in Agricultural and Managed Forest Ecology. Vol. 12. pp. 265-280. Elsevier. doi: 10.1016/B978-0-444-42214-9.50025-9.##Peixoto, M., Santana, J., Coelho, I., Luiz, P., Farias, F., Teodoro, P., & Bhering, L. (2022). Genotype selection based on multiple traits in cotton crops: The application of genotype by yield×trait biplot. Acta Scientiarum Agronomy, 44(1), e54136. doi: 10.4025/actasciagron.v44i1.54136.##Placido, D. F., Sandhu, J., Sato, S. J., Nersesian, N., Quach, T., Clemente, T. E., Staswick, P. E., & Walia, H. (2020). The Lateral Root Density gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 18(9), 1955-1968. doi: 10.1111/pbi.13355.##Rahmati, M. (2020). Assessment of relationships among traits and selection of superior bread wheat genotypes using genotype by yield×trait biplot method. Cereal Research, 10(1), 61-72. [In Persian]. doi: 10.22124/cr.2020.15458.1551.##Rahmati, M., Hosseinpour, T., & Ahmadi, A. (2020). Assessment of interrelationship between agronomic traits of wheat genotypes under rain-fed conditions using double and triple biplots of genotype, trait and yield. Iranian Dryland Agronomy Journal, 9(1), 1-20. [In Persian]. doi: 10.22092/idaj.2020.122220.284.##Reynolds, M. P., & Braun, H. J. (2022). Wheat Improvement: Food Security in a Changing Climate. Springer Cham. 629 p. doi: 10.1007/978-3-030-90673-3.##Reynolds, M. P., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant Biology, 31, 162-171. doi: 10.1016/j.pbi.2016.04.005.##Romena, M., Najaphy, A., Saeidi, M., & Khoramivafa, M. (2022). Identification of superior wheat genotypes using multiple-trait selection methods based on agronomic characters and grain protein content under rain-fed conditions. Genetika, 54(1), 15-26. doi: 10.2298/GENSR2201015R.##Ruiz, S., Or, D., & Schymanski, S. J. (2015). Soil penetration by earthworms and plant roots-Mechanical energetics of bioturbation of compacted soils. PLoS ONE, 10(6), e0128914. doi: 10.1371/journal.pone.0128914.##Ruiz, S., Straub, I., Schymanski, S. J., & Or, D. (2016). Experimental evaluation of earthworm and plant root soil penetration-Cavity expansion models using cone penetrometer analogs. Vadose Zone Journal, 15(3), 1-14. doi: 10.2136/vzj2015.09.0126.##Saba, J., Tavana, Sh., Qorbanian, Z., Shadan, E., Shekari, F., & Jabbari, F. (2018). Canonical correlation analysis to determine the best traits for indirect improvement of wheat grain yield under terminal drought stress. Journal of Agricultural Science & Technology, 20(5), 1037-1048. dor: 20.1001.1.16807073.2018.20.5.10.0.##Sinclair, T. R. (1994). Limits to crop yield? In: Boote, K. J., Bennett, J. M., Sinclair, T. R., & Paulsen, G. M. (Eds.). Physiology and Determination of Crop Yield. American Society of Agronomy, Inc. pp. 509-532. doi: 10.2134/1994.physiologyanddetermination.c33.##Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological Modelling, 312, 200-210. doi: 10.1016/j.ecolmodel.2015.05.028.##Tsenov, N., Gubatov, T., & Yanchev, I. (2020). Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Research Communications, 49, 1-6. doi: 10.1007/s42976-020-00080-7.##Turner, N. C., Wright, G. C., & Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71, 193-231. doi: 10.1016/S0065-2113(01)71015-2.##Wasson, A. P., Chiu, G. S., Zwart, A. B., & Binns, T. R. (2017). Differentiating wheat genotypes by bayesian hierarchical nonlinear mixed modeling of wheat root density. Frontiers in Plant Science, 8, 282. doi: 10.3389/fpls.2017.00282.##Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., & Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485-3498. doi: 10.1093/jxb/ers111.##Wei, X., Guo, S., Ma, B., Palta,  J. A., Ma, Y., & Li, P. (2024). Wheat yield improvement is associated with altered root systems during cultivar replacement. European Journal of Agronomy, 154, 127101. doi: 10.1016/j.eja.2024.127101.##Xie, Q., Fernando, K. M. C., Mayes, S., & Sparkes, D. L. (2017). Identifying seedling root architectural traits associated with yield and yield components in wheat. Annals of Botany, 119(7), 1115-1129. doi: 10.1093/aob/mcx001.##Yan, W. (2015). Mega‐environment analysis and test location evaluation based on unbalanced multiyear data. Crop Science, 55(1), 113-122. doi: 10.2135/cropsci2014.03.0203.##Yan, W. (2016). Analysis and handling of G×E in a practical breeding program. Crop Science, 56(5), 2106-2118. doi: 10.2135/cropsci2015.06.0336.##Yan, W., & Frégeau-Reid, J. (2018). Genotype by yield×trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Scientific Reports, 8(1), 8242. doi: 10.1038/s41598-018-26688-8.##Zhu, L., & Zhang, D.-Y. (2013). Donald’s ideotype and growth redundancy: A pot experimental test using an old and a modern spring wheat cultivar. PLoS ONE, 8(7), e70006. doi: 10.1371/journal.pone.0070006.