Expression pattern of HMA1, HMA2 and HMA9 genes under Zn deficiency conditions in bread wheat cultivars with different Zn uptake efficiency

Document Type : Research Paper

Authors

1 M. Sc. Student, Dept. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran

2 Assoc. Prof., Dept. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran

Abstract

Heavy metal associated (HMA) proteins are involved in zinc (Zn) uptake from soil and its transport in plants. To study the expression pattern of HMA1, HMA2 and HMA9 genes in Zn-efficient and
Zn-inefficient bread wheat cultivars under zinc deficiency conditions, a factorial experiment in completely randomized design (CRD) with three replications was carried out in greenhouse. Two
Zn-efficient (Hamoon) and -inefficient (Hirmand) cultivars were grown under Zn deficient and sufficient (5 mg Zn per kg soil) conditions and relative expression of the studied genes in root and leaf at two growth stages, one month after cultivation (vegetative stage) and 30 % flowering (reproductive stage) were measured by real time PCR technique. The results revealed that the highest increase in the expression of HMA1 (30.9 fold more than check) and HMA2 (13.65 fold more than check) genes were observed at reproductive stage in the leaf and root of Hamoon cultivar under Zn deficiency conditions, respectively. In contrast, the highest increase in the expression of HMA9 gene (48.83 fold more than check) was found in the root of Hamoon cultivar at vegetative stage. Also, there was not a significant difference between Zn-efficient and -inefficient cultivars in term of expression of this gene in the root at reproductive stage. In conclusion, the results of the current study showed that the expression of HMA1, HMA2 and HMA9 genes are involved in soil Zn deficiency tolerance in Zn-efficient bread wheat cultivars.

Keywords


Axelsen, K. B. and Palmgren, M. G. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. Journal of Molecular Evolution 46 (1): 84-101.##Axelsen, K. B. and Palmgren, M. G. 2001. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology 126 (2): 696-706.‏##Baghbani, A. A., Kadkhodaie, A. and Modarres, S. S. A. M. 2015. Effect of wheat and bean residue along with zinc sulfate on zinc and iron concentration and grain yeild of wheat.‏ Journal of  Agricultural Science and Sustainable Production 25 (3): 91-102. (In Persian with English Abstract).##Baghban-Tabiat, S. and Rasouli-Sadaghiani, M. 2012. Investigation of Zn utilization and acquisition efficiency in different wheat genotypes at greenhouse conditions. Journal of Science and Technology of Greenhouse Culture  3 (2): 17-32. (In Persian with English Abstract).##Barabasz, A., Wilkowska, A., Tracz, K., Ruszczyńska, A., Bulska, E., Mills, R. F. and Antosiewicz, D. M. 2013. Expression of HvHMA2 in tobacco modifies Zn–Fe–Cd homeostasis. Journal of Plant Physiology 170 (13): 1176-1186.##Bernard, C., Roosens, N., Czernic, P., Lebrun, M. and Verbruggen, N. 2004. A novel CPx‐ATPase from the cadmium hyperaccumulator Thlaspi caerulescensFederation of the European Biochemical Societies Letters 569 (1-3): 140-148.##Cobbett, C. S., Hussain, D. and Haydon. M. J. 2003. Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytologist 159 (2): 315-321.##Ding, J., Ji, C. and Cai, H. 2017. Membrane transporter families of metal microelements make plants grow better and healthier. Asian Journal of Plant Science and Research 7 (6): 1-27.‏##Erenoglu, B., Nikolic, M., Römheld, V. and Cakmak, I. 2002. Uptake and transport of foliar applied zinc (65 Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant and Soil 241 (2): 251-257.##Graham, R. D., Ascher, J. S. and Hynes, S. C. 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil 146 (1-2): 241-250.##Hasheminezhad, A., Ghanian, M., Abdeshahi, A. and Khosravipour, B. 2018. Assessment of wheat production related risks in the bread supply chain of Khuzestan province.‏ Iranian Journal of Agricutural Economics 49 (3): 439-459. (In Persian with English Abstract).##Hussain, D., Haydon, M. J., Wang, Y., Wong, E., Sherson, S. M., Young, J., Camakaris, J., Harper, J. F. and Cobbett, C. S. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell 16 (5): 1327-1339.##Kalendar, R., KhassenovHYPERLINK "https://www.sciencedirect.com/science/article/pii/S0888754317300368", B., Ramankulov, Y., Samuilova, O. and Ivanovd, K. I. 2017. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics109 (3-4): 312-319.##Kim, Y. Y., Choi, H., Segami, S., Cho, H. T., Martinoia, E., Maeshima, M. and Lee, Y. 2009. AtHMA1 contributes to the detoxification of excess Zn (II) in ArabidopsisThe Plant Journal 58 (5): 737-753.‏##Lee, J., Bae, H., Jeong, J., Lee, J. Y., Yang, Y. Y., Hwang, I., Martinoia, E. and Lee, Y. 2003. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiology 133(2): 589–596.##Lee, S., Kim, Y. Y., Lee, Y. and An, G. 2007. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology 145 (3): 831-842.##Li, D., Xu, X., Hu, X., Liu, Q., Wang, Z., Zhang, H. and Li, C. 2015. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus  trichocarpa. Frontiers in Plant Science  6: 1149.##Lindsay, W. L. and Norvell, W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Science Society of America Journal 42 (3): 421-428.‏##Malakouti, M. J. 2007. Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology 1 (1): 1-12.##Mirzamasoumzadeh, B., Ghalichechi, S., Salami, M., Karimi, M. and Mohseni, A.B. 2013. The study of wheat genotypes is planted in Ardabil using multivariate statistical methods. Journal of Farming and Allied Sciences 2 (8): 188-189.##Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.##Neumann, G. and Römheld, V. 2007. The release of root exudates as affected by the plant physiological status. In: Pinton, R., Varanini, Z., Nannipieri, Z. (Eds.). The rhizosphere: Biochemistry and organic substances at the soil-plant interface. Boca Raton, FL: CRC Press. pp: 23-72.##Niazkhani, S. M., Abdollahi Mandoulakani, B., Jafari, M. and Rasouli-Sadaghiani, M. 2018. Studying the expression of ZIP1, ZIP3 and ZIP6 genes in bread wheat under Zn deficiency conditions. Cereal Research  8 (3): 345-358. (In Persian with English Abstract).##Pandey, N., Gupta, B. and Pathak, G. C. 2012. Antioxidant responses of pea genotypes to zinc deficiency. Russian Journal of Plant Physiology 59 (2): 198-205.##Pfaffi, M. W. 2001. A new mathematical model for relative quantification in real time PCR. Nucleic Acids Research 29 (9): e45.##Rengel, Z. 2001. Genotypic differences in micronutrient use efficiency in crops. Communications in Soil Science and Plant Analysis 32 (7-8): 1163-1186.##Rensing, C., Ghosh, M. and Rosen, B. P. 1999. Families of soft-metal-ion-transporting ATPasesJournal of Bacteriology 181 (19): 5891-5897.##Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13 (4): 905-927.‏##Satoh-Nagasawa, N., Mori, M., Nakazawa, N., Kawamoto, T., Nagato, Y., Sakurai, K. and Akagi, H. 2011. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant and Cell Physiology 53 (1): 213-224.‏##Sekler, I., Sensi, S. L., Hershfinkel, M. and Silverman, W. F. 2007. Mechanism and regulation of cellular zinc transport. Molecular Medicine 13 (7-8): 337-343.##Sinclair, S. A., Senger, T., Talke, I. N., Cobbett, C. S., Haydon, M. J. and Kraemer, U. 2018. Systemic upregulation of MTP2 and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. The Plant Cell 30 (10): 2463-2479.‏##Takahashi, R., Bashir, K., Ishimaru, Y., Nishizawa, N. K. and Nakanishi, H. 2012a. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling and Behavior 7 (12): 1605-1607.##Takahashi, R., Ishimaru, Y., Shimo, H., Ogo, Y., Senoura, T., Nishizawa, N. K. and Nakanishi, H. 2012b. The OsHMA2 transporter is involved in root‐to‐shoot translocation of Zn and Cd in rice. Plant, Cell and Environment 35 (11): 1948-1957.##Tuteja, N. and Gill, S. S. 2012. Crop improvement under adverse conditions (Eds.). Springer Science and Business Media.‏##Van de Mortel, J.E., Villanueva, L. A., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P. D., van Themaat, E. V. L., Koornneef, M. and Aarts, M. G. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology 142 (3): 1127-1147.##Williams, L. E. and Mills, R. F. 2005. P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science 10 (10): 491-502.##Williams, L. E., Pittman, J. K. and Hall, J. L. 2000. Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta 1465 (1-2): 104-126.##Zadoks, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415-421.##