Agricultural Statistics. 2018. Annual Report. Agricultural statistics. Ministry of Agriculture-Jahad. https://www.maj.ir/Index.aspx. [In Persian]
Ahmed, H.G.M.D., Iqbal, M.N., Iqbal, M.A., Zeng, Y., Ullah, A., Iqbal, M., Raza, H., Yar, M.M., Sarwar, N., Imran, M. and Hussain, S. 2021. Genome-wide association mapping for stomata and yield indices in bread wheat under water limited conditions. Agronomy 11: 1646.
Ahmed, H.Gh.M., Sajjad, M., Zeng, Y., Iqbal, M., Habibullah-Khan, S., Ullah, A. and Nadeem Akhtar, M. 2020. Genome-wide association mapping through 90K SNP array for quality and yield attributes in bread wheat against water deficit conditions. Agriculture 10 (9): 2-23.
Ain, Q.U., Rasheed, A., Anwar, A., Mahmood, T., Imtiaz, M., He, Z., Xia, X., Mahmood, T. and Quraishi, U.M. 2015. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Frontiers in Plant Science 6: 1-15.
Cook, B.I., Mankin, J.S. and Anchukaitis, K.J. 2018. Climate change and drought: From past to future. Current Climate Change Reports 4: 164-179.
Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K. and Buckler, E.S. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE
6 (5): 1-9.
Flint-Garcia, S.A., Thuillet, A.C., Yu, J., Pressoir , G., Romero, S.M. and Mitchell, S.E. 2005. Maize association population: A high resolution platform for quantitative trait locus dissection. Plant Journal 46 (6): 1054-1064.
Gahlaut, V., Jaiswal, V., Balyan, H.S., Kumar, J.A. and Gupta, P.K. 2021. Multi-locus GWAS for grain weight related traits under rain-fed conditions in common wheat (Triticum aestivum L.). Frontiers in Plant Science 12: 1-13.
Gahlaut, V., Jaiswal, V., Singh, S., Balyan, H.S. and Gupta, P. 2019. Multi-locus genome wide association mapping for yield and its contributing traits in hexaploid wheat under different water regimes. Scientific Reports 9: 1-15.
Hittalmani, S., Huang, N., Courtois, B., Venuprasad, R., Shashidhar, H.E., Zhuang, J.Y., Zheng, K.L., Liu, G.F., Wang, G.C., Sidhu, J.S., Srivantaneeyakul, S., Singh, V.P., Bagali, P.G., Prasanna, H.C., McLaren, G. and Khush, G.S. 2021. Identification of QTL for growth and grain yield -related traits in rice across nine locations of Asia. Theoretical and Applied Genetics 107: 679-690.
Hu, H. and Xiong, L. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology 65: 715-741.
Kalinowski, S.T. 2002. How many alleles per locus should be used to estimate genetic distances? Heredity 88: 62-65.
Khalili, M. and Mohammadi, A. 2016. Mapping QTLs associated with wheat seed germination under normal and drought stress conditions. Crop Biotechnology 9: 1-14. (In Persian with English Abstract).
Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler E.D. and Doebley, J. 2003. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165: 2117-2128.
Liu, Y., Lin, Y., Gao, Sh., Li, Zh., Ma, J., Deng, M., Chen, G., Wei, Y. and Zheng, Y. 2017. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal 19: 861-873.
Liu, Y., Wang, L., Mao., Sh., Liu, K., Lu, Y., Wang, J., Wei., Y. and Zheng, Y. 2015. Genome-wide association study of 29 morphological traits in Aegilops taushii. Scientific Reports 5: 15562.
Mohammadi, Y., Mohammadi, S.A., Moghaddam, M. and Rostaei, M. 2016. Identification of molecular markers linked to the genes controlling width and length flag and second leaves and grain yield in bread wheat under rainfed and supplementary irrigation conditions. Cereal Research 6 (3): 271-282. (In Persian with English Abstract).
Neumann, K., Kobiljski, B., Denčić, S., Varshney, R. and Börner, A. 2011. Genome‒wide association mapping: A case study in bread wheat (Triticum aestivum L.). Molecular Breeding 27: 37-58.
Qaseem, M.F., Qureshi, R., Muqaddasi, Q.H., Shaheen, H., Kousar, R. and Roder, M.S. 2018. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLoS ONE 13 (6): 1-22.
Quraishi, U.M., Murat, F., Abrouk, M., Pont, C., Confolent, C., Oury, F.X., Ward, J., Boros, D., Gebruers, K., Delcour, J.A., Courtin, Ch.M., Bedo, Z., Saulnier, L., Guillon, F., Balzergue, S., Shewry, P.R., Feuillet, C., Charmet, G. and Salse, J. 2011. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (
Triticum aestivum L.).
Functional and Integrative Genomics 11: 71-83.
Rabbi, S.M.H., Kumar, A., Naraghi, S.M., Simsek, S., Sapkota, S., Sonlaki, Sh., Alamri, M.S., Elias, E.M., Kianian, Sh., Missaoui, A. and Mergoum, M. 2021. Genome-wide association mapping for yield and related traits under drought stressed and non-stressed environments in wheat. Frontiers in Genetics 12: 1-13.
Rawson, H.M., Richards, R.A. and Munns, R. 1988. An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Australian Journal of Agricultural Research 39: 759-772.
Safdar, L., Bin, A., Ndleeb, T., Latif, S., Umer, M.J., Tang, M., Li, X., Liu, Sh. and Quraishi, U.M. 2020. Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Frontiers in Plant Science 11: 1-14.
Senapati, N., Stratonovitch, P., Paul, M.J. and Semenov, M.A. 2019. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany 70: 2549-2560.
Sonmezoglu, O. and Terzi, B. 2018. Characterization of some bread wheat genotypes using molecular markers for drought tolerance. Journal of Plant Physiology and Molecular Biology
24 (1): 159-166.
Spataro, G., Tiranti, B., Arcaleni, P., Bellucci, E., Attene, G., Papa, R., Spagnoletti, Z.P. and Negri, V. 2011. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical Application of Genetic 122: 1281-1291.
Sukumaran, S. and Yu, J. 2014. Association mapping of genetic resources: Achievements and future perspectives. In: Tubersoa, R., Garner, A. and Frison, E. (Eds). Genomics of plant genetic resources. pp: 207-235.
Sukumaran, S., Reynolds, M.P. and Sansaloni, C. 2018. Genome-wide association analysis identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Frontiers in Plant Science 9: 1-16.
Terry, G.B., Baeziger, P.S. and Morris. R. 1992. Chromosomal location of wheat quantitative trait loci affecting agronomic performance of seven traits using reciprocal chromosome substitutions. Crop Science 32: 621-627.
Tuberosa, R., Salvi, S., Sanguineti, M.C., Landi, P., Maccaferri, M. and Conti. S. 2002. Mapping QTLs regulating morpho-physiological traits and yield in drought stressed maize: Case studies, shortcomings and perspectives. Annals of Botany 89 (7): 941-963.
Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K. and Graner, A. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173:
638-649.
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S. and Huang, B.E. 2014. Characterization of poly ploid wheat genomic diversity using a high density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787-796.
Zadocs, J.C., Changh, T.T. and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415-421.
Zare-Kohan, M., Babaeian Jelodar, N., Aghnoum, R., Tabatabaee, S.A. and Kazemi Tabar, S.K. 2018. Association mapping of some phonological traits in barley under salt stress. Journal of Crop Breeding 10 (26): 12-21. (In Persian with English Abstract).
Zhu, C., Gore, M., Buckler, E.S. and Yu, J. 2008. Status and prospects of association mapping in plants. The Plant Genome 1 (1): 5-20.