Genome wide identification and characterization of strictosidine synthase-like (SSL) genes in wheat (Triticum aestivum L.)

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran (* Corresponding author: rezadoostmh@guilan.ac.ir )

2 Graduate Ph.D., Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

Introduction
Wheat (Triticum aestivum L.) is globally recognized as a crucial food crop. Due to the significant increase in human population in recent years, there is a need for food production to match population growth, especially for primary crops like wheat. Given the decline in wheat cultivation and yield caused by biotic and abiotic stresses, the cultivation of stress-resistant varieties is a cost-effective and fundamental strategy to mitigate their adverse impacts. Identifying resistance genes is essential for developing new resistant varieties using breeding programs. Strictosidine synthase-like (SSL) genes with a length of approximately 400 amino acids, play a role in plant immunity regulation and possess an extracellular structural domain resembling animal hemomyosin. Previous studies have shown that all categories of AtSSL genes exhibit a response to various biotic and abiotic stressors. At present, our major understanding of the SSL gene family in plants is primarily based on research conducted on Arabidopsis thaliana. In this study, bioinformatics tools were used to explore the evolutionary relationships and functional roles of the SSL gene family in wheat.
Materials and methods
In the first step, the sequence of SSL proteins from rice and Arabidopsis was used to identify genes encoding wheat SSL in the Ensembl Plants database by the PlastP algorithm. Next, phylogenetic relationships were analyzed by MEGA7, the exon-intron structure and intron phase using the Gene Structure view in TBtools-II, and conserved motifs with Multiple Em for Motif Elicitation. Additionally, cis-regulatory elements in the promoter region, gene duplication events, and selection pressure were investigated through PlantCare and the Simple Ka/Ks Calculator in TBtools-II. The expression profiles of TaSSL genes in response to abiotic stresses were analyzed using the expVIP server. All analyses were conducted using default parameters of the software and servers.
Research findings
This study identified 69 SSL genes in the wheat genome, exhibiting a non-unifom distribution across chromosomes. The evolutionary study of this family revealed two main phylogenetic groups in the SSLs of different organisms: The first group (I), encompassing exclusively wheat and rice SSLs genes, and the second group (II), containing genes from diverse organisms. Further subdivision of group II into three subgroups (A, B, and C) highlighted potential functional divergence among members. The analysis of conserved motifs, gene structure, and intron phase indicated a high degree of conservation for these genes. Furthermore, segmental duplication emerged as the primary driver of wheat SLL gene expansion, and these duplicated genes experiencing strong negative selection pressure. The presence of cis-regulatory elements responsive to hormones and stresses suggests intricate regulation of TaSSL gene expression. Consistent with this notion, RNA-seq data revealed the inducible expression of TaSSL genes in response to abiotic stresses, including cold, heat, drought, and PEG.
Conclusion
The presence of a distinct evolutionary cluster of wheat SSL genes, characterized by features typically associated with stress-responsive genes such as a low number of introns, the application of negative selection pressure, the presence of regulatory elements responsive to stresses and hormones, as well as the expression patterns of TaSSL genes in response to abiotic stresses indicated their significant role in wheat's stress response mechanisms. Consequently, the findings of this study can provide valuable insights into the functions of TaSSL genes, facilitating the identification of potential candidates for producing stress-resistant wheat varieties in future breeding programs.

Keywords

Main Subjects


Ahmad, H. M., Alafari, H. A., Fiaz, S., Alshaya, D. S., Toor, S., Ijaz, M., Rasool, N., Attia, K. A., Zaynab, M., & Azmat, S. (2022). Genome-wide comparison and identification of myosin gene family in Arabidopsis thaliana and Helianthus annuus. Heliyon, 8(12), e12070. doi: 10.1016/j.heliyon.2022.e12070.##Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegel, V., Fortier, A., & Gasteiger, E. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597-W603. doi: 10.1093/nar/gks400.##Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, W202-W208. doi: 10.1093/nar/gkp335.##Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Plant Bioinformatics: Methods & Protocols, 1374, 115-140. doi: 10.1007/978-1-4939-3167-5_6.##Borrill, P., Ramirez-Gonzalez, R., & Uauy, C. (2016). ExpVIP: A customizable RNA-seq data analysis and visualization platform. Plant Physiology, 170(4), 2172-2186. doi: 10.1104/pp.15.01667.##Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., & May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 4, 10. doi: 10.1186/1471-2229-4-10.##Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., & He, Y. (2023). TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11), 1733-1742. doi: 10.1016/j.molp.2023.09.010.##Chen, L., Meng, J., He, X. L., Zhang, M., & Luan, Y. S. (2019). Solanum lycopersicum microRNA1916 targets multiple target genes and negatively regulates the immune response in tomato. Plant, Cell & Environment, 42(4),  1393-1407. doi: 10.1111/pce.13468.##Dobritsa, A. A., Nishikawa, S.-I., Preuss, D., Urbanczyk-Wochniak, E., Sumner, L. W., Hammond, A., Carlson, A. L., & Swanson, R. J. (2009). LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. Sexual Plant Reproduction, 22(3), 167-177. doi: 10.1007/s00497-009-0101-8.##Fabbri, M., Delp, G., Schmidt, O., & Theopold, U. (2000). Animal and plant members of a gene family with similarity to alkaloid-synthesizing enzymes. Biochemical & Biophysical Research Communications, 271(1), 191-196. doi: 10.1006/bbrc.2000.2598.##Facchini, P. J., Bird, D. A., & St-Pierre, B. (2004). Can Arabidopsis make complex alkaloids? Trends in Plant Science, 9, 116-122. doi: 10.1016/j.tplants.2004.01.004.##Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9, 352. doi: 10.3390/agronomy9070352.##Gu, L., Cao, Y., Chen, X., Wang, H., Zhu, B., Du, X., & Sun, Y. (2023). The genome-wide identification, characterization, and expression analysis of the strictosidine synthase-like family in maize (Zea mays L.). International Journal of Molecular Sciences, 24, 14733. doi: 10.3390/ijms241914733.##Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., Wang, Y., & Wang, J. (2008). Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics & Genomics, 35, 105-118. doi: 10.1016/S1673-8527(08)60016-8.##Hernandez-Garcia, C. M., & Finer, J. J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 217, 109-119. doi: 10.1016/j.plantsci.2013.12.007.##Hicks, M. A., Barber, A. E., & Babbitt, P. C. (2013). The Nucleophilic Attack Six‐Bladed β‐Propeller (N6P) Superfamily. In: Orengo, C., & Bateman, A. (Eds.). Protein Families: Relating Protein Sequence, Structure, and Function. Wiley Online Library. pp. 125-158. doi: 10.1002/9781118743089.ch6.##Hicks, M. A., Barber, A. E., Giddings, L. A., Caldwell, J., O'connor, S. E., & Babbitt, P. C. (2011). The evolution of function in strictosidine synthase‐like proteins. Proteins: Structure, Function, & Bioinformatics, 79(11), 3082-3098. doi: 10.1002/prot.23135.##Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K.-M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 968. doi: 10.3390/agronomy11050968.##Kibble, N. A., Sohani, M. M., Shirley, N., Byrt, C., Roessner, U., Bacic, A., Schmidt, O., & Schultz, C. J. (2009). Phylogenetic analysis and functional characterisation of strictosidine synthase-like genes in Arabidopsis thaliana. Functional Plant Biology, 36, 1098-1109. doi: 10.1071/FP09104.##Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution, 33(7), 1870-1874. doi: 10.1093/molbev/msw054.##Kutchan, T., Hampp, N., Lottspeich, F., Beyreuther, K., & Zenk, M. (1988). The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli. FEBS Letters, 237, 40-44. doi: 10.1016/0014-5793(88)80167-4.##Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van De Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. doi: 10.1093/nar/30.1.325.##Letunic, I., & Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46(D1), D493-D496. doi: 10.1093/nar/gkx922.##Liu, H., Lyu, H. M., Zhu, K., Van De Peer, Y., & Cheng, Z. M. (2021). The emergence and evolution of intron‐poor and intronless genes in intron‐rich plant gene families. The Plant Journal, 105, 1072-1082. doi: 10.1111/tpj.15088.##Liu, M., Dong, H., Wang, M., & Liu, Q. (2020). Evolutionary divergence of function and expression of laccase genes in plants. Journal of Genetics, 99, 1-16. doi: 10.1007/s12041-020-1184-0.##Magwanga, R. O., Lu, P., Kirungu, J. N., Lu, H., Wang, X., Cai, X., Zhou, Z., Zhang, Z., Salih, H., & Wang, K. (2018). Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics, 19, 6. doi: 10.1186/s12863-017-0596-1.##Qanmber, G., Liu, J., Yu, D., Liu, Z., Lu, L., Mo, H., Ma, S., Wang, Z., & Yang, Z. (2019). Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. International Journal of Molecular Sciences, 20, 1750. 10.3390/ijms20071750.##Sarcheshmeh, M. K., Abedi, A., & Aalami, A. (2023). Genome-wide survey of catalase genes in Brassica rapa, Brassica oleracea, and Brassica napus: Identification, characterization, molecular evolution, and expression profiling of BnCATs in response to salt and cadmium stress. Protoplasma, 260, 899-917. doi: 10.1007/s00709-022-01822-6.##Sievers, F., & Higgins, D. G. (2014). Clustal omega. Current Protocols in Bioinformatics, 48, 313. doi: 10.1002/0471250953.bi0313s48.##Smedley, D., Haider, S., Ballester, B., Holland, R., London, D., Thorisson, G., & Kasprzyk, A. (2009). BioMart–biological queries made easy. BMC Genomics, 10, 1-12. doi: 10.1186/1471-2164-10-22.##Sohani, M., Schenk, P., Schultz, C., & Schmidt, O. (2009). Phylogenetic and transcriptional analysis of a strictosidine synthase‐like gene family in Arabidopsis thaliana reveals involvement in plant defence responses. Plant Biology, 11, 105-117. doi: 10.1111/j.1438-8677.2008.00139.x.##Theopold, U., Samakovlis, C., Erdjument-Bromage, H., Dillon, N., Axelsson, B., Schmidt, O., Tempst, P., & Hultmark, D. (1996). Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. Journal of Biological Chemistry, 271, 12708-12715. doi: 10.1074/jbc.271.22.12708.##Wang, R., Zhao, W., Yao, W., Wang, Y., Jiang, T., & Liu, H. (2023a). Genome-wide analysis of strictosidine synthase-like gene family revealed their response to biotic/abiotic stress in poplar. International Journal of Molecular Sciences, 24(12), 10117. doi: 10.3390/ijms241210117.##Wang, T., Song, H., Zhang, B., Lu, Q., Liu, Z., Zhang, S., Guo, R., Wang, C., Zhao, Z., & Liu, J. (2018). Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet (Setaria italica L.). 3 Biotech, 8(12), 486. doi: 10.1007/s13205-018-1502-x.##Wang, Y., Ruan, Q., Zhu, X., Wang, B., Wei, B., & Wei, X. (2023b). Identification of alfalfa SPL gene family and expression analysis under biotic and abiotic stresses. Scientific Reports, 13, 84. doi: 10.1038/s41598-022-26911-7.##Wu, X., Zhou, C., Li, X., Lin, J., Aguila, L. C. R., Wen, F., & Wang, L. (2023). Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics, 24, 344. doi: 10.1186/s12864-023-09446-7.##Xu, G., Guo, C., Shan, H., & Kong, H. (2012). Divergence of duplicate genes in exon–intron structure. Proceedings of the National Academy of Sciences, 109, 1187-1192. doi: 10.1073/pnas.1109047109.##Yamazaki, Y., Urano, A., Sudo, H., Kitajima, M., Takayama, H., Yamazaki, M., Aimi, N., & Saito, K. (2003). Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry, 62(3), 461-470. doi: 10.1016/S0031-9422(02)00543-5.##Yan, F., Zhou, H., Yue, M., Yang, G., Li, H., Zhang, S., & Zhao, P. (2019). Genome-wide identification and transcriptional expression profiles of the F-box gene family in common walnut (Juglans regia L.). Forests, 10(3), 275. doi: 10.3390/f10030275.##Yoshida, S., Ito, M., Nishida, I., & Watanabe, A. (2001). Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana. Plant & Cell Physiology, 42(2), 170-178. doi: 10.1093/pcp/pce021.##Yoshioka, Y., Suzuki, G., Zayasu, Y., Yamashita, H., & Shinzato, C. (2022). Comparative genomics highlight the importance of lineage-specific gene families in evolutionary divergence of the coral genus, Montipora. BMC Ecology & Evolution, 22, 71. doi: 10.1186/s12862-022-02023-8.##Yu, J., Yuan, Y., Dong, L., & Cui, G. (2023). Genome-wide investigation of NLP gene family members in alfalfa (Medicago sativa L.): Evolution and expression profiles during development and stress. BMC genomics, 24, 320. doi: 10.1186/s12864-023-09418-x.##Yuan, Y., Yin, X., Han, X., Han, S., Li, Y., Ma, D., Fang, Z., Yin, J., & Gong, S. (2023). Genome-wide identification, characterization and expression analysis of the TaDUF724 gene family in wheat (Triticum aestivum). International Journal of Molecular Sciences, 24(18), 14248. doi: 10.3390/ijms241814248.##Zhang, L., Li, S., Fang, X., An, H., & Zhang, X. (2023). Genome-wide analysis of LysM gene family members and their expression in response to Colletotrichum fructicola infection in Octoploid strawberry (Fragaria×ananassa). Frontiers in Plant Science, 13, 1105591. doi: 10.3389/fpls.2022.1105591.##Zou, T., Li, S., Liu, M., Wang, T., Xiao, Q., Chen, D., Li, Q., Liang, Y., Zhu, J., & Liang, Y. (2017). An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Scientific Reports, 7, 6863. doi: 10.1038/s41598-017-07064-4.