Abdelaziz, M., Xuan, T., Mekawy, A., Wang, H., & Khanh, T. (2018). Relationship of salinity tolerance to Na
+ exclusion, proline accumulation, and antioxidant enzyme activity in rice seedlings.
Agriculture,
8(11), 166.
doi: 10.3390/agriculture8110166.##Aebi, H. (1984). Catalase in vitro.
Methods in Enzymology,
105, 121-126.
doi: 10.1016/S0076-6879(84)05016-3.##Al-Tawaha, A. R., Samarah, N., & Ranga, A. D.,
Darvhankar, M. S.,
Saranraj, P.,
Pour-Aboughadareh, A.,
Siddique, K. H. M.,
Imran, A.,
Qaisi, A. M.,
Al-Tawaha, A. R.,
Khalid, S.,
Rauf, A.,
Thangadurai, D.,
Sangeetha, J.,
Fahad, S.,
Al-Taisan, W. A., &
Al-Taey, D. K. A. (2021). Soil salinity and climate change. In:
Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (Eds.). Sustainable Soil and Land Management and Climate Change. CRC Press. pp. 83-93. doi: 1
0.1201/9781003108894.##Amini, A., Amirnia, R., & Gazvini, H. (2016). Evaluation of relationship between physiological and agronomic traits related to salinity tolerance in bread Wheat (
Triticum aestivum L.) genotypes.
Iranian Journal of Crop Sciences,
17(4), 329-348. [In Persian]. dor:
20.1001.1.15625540.1394.17.4.6.4.##Anjum, F., Yaseen, M., Rasool, E., Wahid, A., & Anjum, S. ( 2003). Water stress in barley (
Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents.
Pakistan Journal of Agricultural Science,
40(1-2), 43-49.##Askari Kolestani, A. R., Ramadanpour, S. S., Barzoui, A., Sultanlou, H., & Nawabpour, S. (2016). Study of biochemical and molecular changes of salt tolerance in bread wheat lines (
Triticum aestivum L.) irradiated with gamma rays. Ph. D. Dissertation, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran. [In Persian].##Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies.
Plant & Soil,
39, 205-207. doi:
10.1007/BF00018060.##Beyer Jr. W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions.
Analytical Biochemistry,
161(2), 559-566. doi:
10.1016/0003-2697(87)90489-1.##Chen, J., Zhang, X., & Jing, R. (2010). Cloning and genetic diversity analysis of a new
P5CS gene from common bean (
Phaseolus vulgaris L.).
Theoretical & Applied Genetics,
120, 1393-1404. doi:
10.1007/s00122-010-1263-3.##Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2016). Proline accumulation in plants: Roles in stress tolerance and plant development. In: Iqbal, N., Nazar, R., & Khan, N. A. (Eds.). Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. pp. 155-166. doi:
10.1007/978-81-322-2616-1_9.##Erskine, P. D., Stewart, G. R., Schmidt, S., Turnbull, M. H., Unkovich, M., & Pate, J. S. (1996). Water availability – A physiological constraint on nitrate utilization in plants of Australian semi‐arid muiga woodlands.
Plant, Cell & Environment,
19(10), 1149-1159.
doi: 10.1111/j.1365-3040.1996.tb00430.x.##Esfandiari, E., Enayati, V., & Abbasi, A. (2011). Biochemical and physiological changes in response to salinity in two durum wheat (
Triticum turgidum L.) genotypes.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
39(1), 165-170.
doi: 10.15835/nbha3915625.##Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. ( 2009). Plant drought stress: Effects, mechanisms and management.
Agronomy for Sustainable Development,
29, 185-212. doi:
10.1051/agro:2008021.##Feng, X. J., Li, J. R., Qi, S. L., Lin, Q. F., Jin, J. B., & Hua, X. J. (2016). Light affects salt stress-induced transcriptional memory of P5CS1 in
Arabidopsis.
Proceedings of the National Academy of Sciences,
113(51), E8335-E8343.
doi: 10.1073/pnas.1610670114.##Forlani, G., Bertazzini, M., & Cagnano, G. (2019). Stress‐driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes.
Plant Biology,
21(2), 336-342. doi:
10.1111/plb.12916.##Funck, D., Baumgarten, L., Stift, M., Von Wirén, N., & Schönemann, L. (2020). Differential contribution of
P5CS isoforms to stress tolerance in
Arabidopsis.
Frontiers in Plant Science,
11, 565134.
doi: 10.3389/fpls.2020.565134.##Gholizadeh, D., Amini, A., & Akbarpour, O. A. (2016). Investigating the genetic diversity of Iranian bread wheat germplasms in terms of tolerance to salt stress.
Journal of Crop Breeding,
10(26), 173-184. [In Persian]. doi:
10.29252/jcb.10.26.173.##Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
Plant Physiology & Biochemistry,
48(12), 909-930. doi:
10.1016/j.plaphy.2010.08.016.##Hagege, D., Nouvelot, A., Boucard, J., & Gaspar, T. (1990). Malondialdehyde titration with thiobarbiturate in plant extracts: Avoidance of pigment interference.
Phytochemical Analysis,
1(2), 86-89. doi:
10.1002/pca.2800010208.##Han, B., Wang, C., Tang, Z., Ren, Y., Li, Y., Zhang, D., Dong, Y., & Zhao, X. (2015). Genome-wide analysis of microsatellite markers based on sequenced database in Chinese spring wheat (
Triticum aestivum L.).
PLoS One,
10(11), e0141540. doi:
10.1371/journal.pone.0141540.##Hasanuzzaman, M., Nahar, K., Gill, S. S., & Fujita, M. (2014) Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Tuteja, N., & Gill, S. S. (Eds.). Climate Change and Plant Abiotic Stress Tolerance. Wiley‐VCH Verlag GmbH & Co. KGaApp. 209-249. doi:
10.1002/9783527675265.ch09.##Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity.
Annual Review of Plant Biology,
51(1), 463-499. doi: 10.1146/annurev.arplant.51.1.463.##Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development.
Amino Acids,
39, 949-62. doi:
10.1007/s00726-010-0525-3.##Kavi Kishor, P. B., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and stress tolerance.
Current Science,
88(3), 424-438.##Kiani, D., Soltanloo, H., Ramezanpour, S. S., Nasrolahnezhad Qumi, A. A., Yamchi, A., Zaynali Nezhad, K., & Tavakol, E. (2017). A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress.
Acta Physiologiae Pplantarum,
39, 90. doi: 10.1007/s11738-017-2359-z.##Kibria, M. G., Hossain, M., Murata, Y., & Hoque, M. A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes.
Rice Science,
24(3), 155-162. doi: 10.1016/j.rsci.2017.05.001.##Molassiotis, A., Tanou, G., Diamantidis, G., Patakas, A., & Therios, I. (2006). Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance.
Journal of Plant Physiology,
163(2), 176-185. doi: 10.1016/j.jplph.2004.11.016.##Moloudi, F., Navabpour, S., Soltanloo, H., Ramezanpour, S. S., & Sadeghipour, H. (2013). Catalase and metallothionein genes expression analysis in wheat cultivars under drought stress condition.
Journal of Plant Molecular Breeding,
1(2), 58-64. doi:
10.22058/JPMB.2013.3262.##Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran.
Ecological Indicators,
83, 482-494. doi:
10.1016/j.ecolind.2017.08.001.##Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic
Arabidopsis thaliana.
Plant Journals,
18(2), 185-193. doi: 10.1046/j.1365-313x.1999.00438.x.##Neill, S., Desika, R., & Hancock, J. (2002). Hydrogen peroxide signaling.
Current Openion in Plant Biology,
5, 388-395. doi:
10.1016/s1369-5266(02)00282-0.##Niazkhani, S. M., Mandolakani, B., Jafari, M., & Rasouli Sadkiani, M. M. (2018). The effect of soil zinc deficiency on the activity of antioxidant enzymes and biochemical parameters in bread wheat.
Crop Physiology Journal,
11(41), 5-27. [In Persian].
doi: 20.1001.1.2008403.1398.11.41.1.6.##Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from saltstress and differentially modulate antioxidant enzymes and expression of related genes.
Journal of Plant Physiology,
169(6), 596-604. doi: 10.1016/j.jplph.2012.01.004.##Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.
Biochimica et Biophysica Acta (BBA) - Bioenergetics,
975(3), 384-394. doi: 10.1016/S0005-2728(89)80347-0.##Prasad, R., & Power. J. F. (1997). Soil Fertility Mmanagement for Ssustainabl Agriculture. 1
st Edition. CRC Press. 382 p.##Qiao, K., Fang, C., Chen, B., Liu, Z., Pan, N., Peng, H., Hao, H., Xu, M., Wu, J., & Liu, S. (2020). Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone
Haliotis discus hannai Ino.
World Journal of Microbiology & Biotechnology,
36, 115.
doi: 10.1007/s11274-020-02892-5.##Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth.
Nature & Science,
1(1), 34-40. doi: 10.7537/marsnsj170119.06.##Seki, M., Narusaka, M., & Ishida, J. (2005) Monitoring the expression proles of 7000
Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.
Plant Journal,
31, 279-292. doi:
10.1046/j.1365-313x.2002.01359.x.##Shafi, A., Gill, T., Sreenivasulu, Y., Kumar, S., Ahuja, P. S., & Singh, A. K. (2015). Improved callus induction, shoot regeneration, and salt stress tolerance in
Arabidopsis overexpressing superoxide dismutase from
Potentilla atrosanguinea.
Protoplasma,
252(1), 41-51. doi: 10.1007/s00709-014-0653-9.##Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.
Journal of Botany, 217037. doi: 10.1155/2012/217037.##Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security.
Food Security,
5(3), 291-317.
doi: 10.1007/s12571-013-0263-y.##Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress.
Physiologia Plantarum,
121(1), 58-65. doi: 10.1111/j.0031-9317.2004.00294.x.##Somboonwatthanaku, I., Dorling, S., Leung, S., & McManus, M. T. (2010). Proline biosynthetic gene expression in tissue cultures of rice (
Oryza sativa L.) in response to saline treatment.
Plant Cell, Tissue & Organ Culture,
103, 369-376. doi: 10.1007/s11240-010-9790-9.##Su, M., Li, X. F., Ma, X. Y., Peng, X. J., Zhao, A. G., Cheng, L. Q., Chen, S. Y., & Liu, G. S. (2011). Cloning two
P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment.
Plant Science,
181(6), 652-659. doi:
10.1016/j.plantsci.2011.03.002.##Turkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance.
Environmental & Experimental Botany,
67(1), 2-9. doi: 10.1016/j.envexpbot.2009.05.008.##Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review.
Amino Acids,
35, 753-759. doi:
10.1007/s00726-008-0061-6.##Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves.
Scientia Horticulturae,
103(1), 93-99. doi: 10.1016/j.scienta.2004.04.009.##Wang, M., Zhao, X., Xiao, Z., Yin, X., Xing, T., & Xia, G. (2016). A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity.
Plant Molecular Biology,
91(1-2), 115-130. doi:
10.1007/s11103-016-0446-y.##Jing, Yd., He, Zl, & Yang, Xe. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
Journal of Zhejiang University Science B,
8, 192-207. doi: 10.1631/jzus.2007.B0192.##Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., & Xia, G. (2020). How plant hormones mediate salt stress responses.
Trends in Plant Science,
25(11), 1117-1130. doi: 10.1016/j.tplants.2020.06.008.##Zamocky, M., Furtmüller, P. G., & Obinger, C. (2008). Evolution of catalases from bacteria to humans.
Antioxidants & Redox Signaling,
10(9), 1527-1548. doi: 10.1089/ars.2008.2046.##Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress.
Plant & Cell Physiology,
38(10), 1095-1102. doi: 10.1093/oxfordjournals.pcp.a029093.##Zhou, Y., Tang, N., Huang, L., Zhao, Y., Tang, X., & Wang, K. (2018). Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of
Schizonepeta tenuifolia Briq.
International Journal of Molecular Sciences,
19(1), 252. doi: 10.3390/ijms19010252.