Evaluation of the expression of some key genes of proline biosynthesis pathway and biochemical and physiological traits of two bread wheat varieties in response to salinity stress during the early growth stages

Document Type : Research Paper

Authors

1 M. Sc. Graduate, Department of Plant Breeding and Agricultural Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

3 Ph. D. Student, Department of Plant Breeding and Agricultural Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Introduction
Salinity is one of the most important limiting factors for the production of all agricultural products in many regions of the world. In saline environments, the absorption of nutrients in plants is reduced. Adaptation of plants to environmental stresses requires morphological, physiological, and biochemical changes, including the accumulation of osmolytes, which can play an adaptive role during osmotic stress. One of the common responses of plants to osmotic stress is the accumulation of proline, which is an important and well-known osmolyte that accumulates in many plant organs during stress. The objective of the present study was to evaluate the expression pattern of P5CS and P5CR genes and to investigate some physiological traits in two bread wheat varieties at the early growth stages under salinity stress conditions.
Materials and methods
The experiment was conducted as a split plot factorial in completely randomized design with four replications. The seeds of the studied wheat cultivars were disinfected using 10% ethanol and washed with distilled water, and then sown in 32 pots filled with cocopeat and perlite in a ratio of 2:1. Fifteen seeds of each variety were sown in each pot. Salinity stress was applied after germination and establishment of the seedlings with irrigation water, so that during the irrigation of plants, the control pots were irrigated with strile distilled water (0 dS/m) and the salinity treatment pots were irrigated with saline water containing NaCl (12 dS/m). After the plants reached the tillering and stemming growth stages, five plants were randomly sampled from each experimental pot, and biochemical traits including chlorophyll, proline, cellular oxidation index, potassium and sodium levels were measured at both growth stages. The expression of some genes including P5CS and P5CR was also evaluated on leaf samples.
Research findings
The results of this experiment showed that the effects of salinity stress and variety on all measured biochemical traits (except for the effect of variety on sodium content) were significant. Evaluation of chlorophyll a and b content showed a decrease in the content of both chlorophyll a and b in both varieties, and this decrease was more noticeable at the tillering growth stage. The levels of catalase and superoxide dismutase enzymes increased in both Ehsan and Baharan varieties under the influence of salinity stress, and this increase was more considerable in Ehsan variety at the stemming stage. Sodium content also increased under salinity stress, but this increase was not significant in Baharan variety at the tillering stage and in Ehsan variety at the stemming stage. In contrast, the changes in potassium content due to salt stress were different in two varieties, so that the potassium level in Baharan showed a significant increase at both growth stages due to salinity stress, while in Ehsan it decreased significantly at tillering stage, but its change wasn’t significant at stemming stage. Proline levels also showed a significant increase under salinity stress conditions at both growth stages and in both varieties. In addition, the activity of both genes P5CS and P5CR also increased in both wheat varieties under salinity stress, indicating that there is a direct relationship between the changes of proline levels and the activity of genes involved in its biosynthesis pathway (i.e. P5CS and P5CR) under salinity stress conditions.
Conclusion
Evaluation of biochemical traits and gene expression in the studied two wheat varieties in the current research showed that Ehsan variety can be introduced as a salinity-tolerant cultivar and used in future breeding programs to increase salinity tolerance in wheat.

Keywords

Main Subjects


Abdelaziz, M., Xuan, T., Mekawy, A., Wang, H., & Khanh, T. (2018). Relationship of salinity tolerance to Na+ exclusion, proline accumulation, and antioxidant enzyme activity in rice seedlings. Agriculture, 8(11), 166. doi: 10.3390/agriculture8110166.##Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. doi: 10.1016/S0076-6879(84)05016-3.##Al-Tawaha, A. R., Samarah, N., & Ranga, A. D., Darvhankar, M. S., Saranraj, P., Pour-Aboughadareh, A., Siddique, K. H. M., Imran, A., Qaisi, A. M., Al-Tawaha, A. R., Khalid, S., Rauf, A., Thangadurai, D., Sangeetha, J., Fahad, S., Al-Taisan, W. A., & Al-Taey, D. K. A. (2021). Soil salinity and climate change. In: Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., & Turan, V. (Eds.). Sustainable Soil and Land Management and Climate Change. CRC Press. pp. 83-93. doi: 10.1201/9781003108894.##Amini, A., Amirnia, R., & Gazvini, H.  (2016). Evaluation of relationship between physiological and agronomic traits related to salinity tolerance in bread Wheat (Triticum aestivum L.) genotypes. Iranian Journal of Crop Sciences, 17(4), 329-348. [In Persian]. dor: 20.1001.1.15625540.1394.17.4.6.4.##Anjum, F., Yaseen, M., Rasool, E., Wahid, A., & Anjum, S. ( 2003). Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pakistan Journal of Agricultural Science, 40(1-2), 43-49.##Askari Kolestani, A. R., Ramadanpour, S. S., Barzoui, A., Sultanlou, H., & Nawabpour, S. (2016). Study of biochemical and molecular changes of salt tolerance in bread wheat lines (Triticum aestivum L.) irradiated with gamma rays. Ph. D. Dissertation, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran. [In Persian].##Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant & Soil39, 205-207. doi: 10.1007/BF00018060.##Beyer Jr. W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi: 10.1016/0003-2697(87)90489-1.##Chen, J., Zhang, X., & Jing, R. (2010). Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.). Theoretical & Applied Genetics, 120, 1393-1404. doi: 10.1007/s00122-010-1263-3.##Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2016). Proline accumulation in plants: Roles in stress tolerance and plant development. In: Iqbal, N., Nazar, R., & Khan, N. A. (Eds.). Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. pp. 155-166. doi: 10.1007/978-81-322-2616-1_9.##Erskine, P. D., Stewart, G. R., Schmidt, S., Turnbull, M. H., Unkovich, M., & Pate, J. S. (1996). Water availability – A physiological constraint on nitrate utilization in plants of Australian semi‐arid muiga woodlands. Plant, Cell & Environment, 19(10), 1149-1159. doi: 10.1111/j.1365-3040.1996.tb00430.x.##Esfandiari, E., Enayati, V., & Abbasi, A. (2011). Biochemical and physiological changes in response to salinity in two durum wheat (Triticum turgidum L.) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 165-170. doi: 10.15835/nbha3915625.##Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. ( 2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. doi: 10.1051/agro:2008021.##Feng, X. J., Li, J. R., Qi, S. L., Lin, Q. F., Jin, J. B., & Hua, X. J. (2016). Light affects salt stress-induced transcriptional memory of P5CS1 in ArabidopsisProceedings of the National Academy of Sciences113(51), E8335-E8343. doi: 10.1073/pnas.1610670114.##Forlani, G., Bertazzini, M., & Cagnano, G. (2019). Stress‐driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biology21(2), 336-342. doi: 10.1111/plb.12916.##Funck, D., Baumgarten, L., Stift, M., Von Wirén, N., & Schönemann, L. (2020). Differential contribution of P5CS isoforms to stress tolerance in Arabidopsis. Frontiers in Plant Science, 11, 565134.‏ doi: 10.3389/fpls.2020.565134.##Gholizadeh, D., Amini, A., & Akbarpour, O. A. (2016). Investigating the genetic diversity of Iranian bread wheat germplasms in terms of tolerance to salt stress. Journal of Crop Breeding, 10(26), 173-184. [In Persian]. doi: 10.29252/jcb.10.26.173.##Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology & Biochemistry, 48(12), 909-930. doi: 10.1016/j.plaphy.2010.08.016.##Hagege, D., Nouvelot, A., Boucard, J., & Gaspar, T. (1990). Malondialdehyde titration with thiobarbiturate in plant extracts: Avoidance of pigment interference. Phytochemical Analysis, 1(2), 86-89. doi: 10.1002/pca.2800010208.##Han, B., Wang, C., Tang, Z., Ren, Y., Li, Y., Zhang, D., Dong, Y., & Zhao, X. (2015). Genome-wide analysis of microsatellite markers based on sequenced database in Chinese spring wheat (Triticum aestivum L.). PLoS One, 10(11), e0141540. doi: 10.1371/journal.pone.0141540.##Hasanuzzaman, M., Nahar, K., Gill, S. S., &  Fujita, M. (2014) Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Tuteja, N., & Gill, S. S. (Eds.). Climate Change and Plant Abiotic Stress Tolerance. Wiley‐VCH Verlag GmbH & Co. KGaApp. 209-249. doi: 10.1002/9783527675265.ch09.##Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463-499. doi: 10.1146/annurev.arplant.51.1.463.##Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39, 949-62. doi: 10.1007/s00726-010-0525-3.##Kavi Kishor, P. B., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and stress tolerance. Current Science, 88(3), 424-438.##Kiani, D., Soltanloo, H., Ramezanpour, S. S., Nasrolahnezhad Qumi, A. A., Yamchi, A., Zaynali Nezhad, K., & Tavakol, E. (2017). A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Pplantarum, 39, 90. doi: 10.1007/s11738-017-2359-z.##Kibria, M. G., Hossain, M., Murata, Y., & Hoque, M. A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science24(3), 155-162. doi: 10.1016/j.rsci.2017.05.001.##Molassiotis, A., Tanou, G., Diamantidis, G., Patakas, A., & Therios, I. (2006). Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology163(2), 176-185.‏ doi: 10.1016/j.jplph.2004.11.016.##Moloudi, F., Navabpour, S., Soltanloo, H., Ramezanpour, S. S., & Sadeghipour, H. (2013). Catalase and metallothionein genes expression analysis in wheat cultivars under drought stress condition. Journal of Plant Molecular Breeding, 1(2), 58-64. doi: 10.22058/JPMB.2013.3262.##Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482-494. doi: 10.1016/j.ecolind.2017.08.001.##Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journals, 18(2), 185-193. doi: 10.1046/j.1365-313x.1999.00438.x.##Neill, S., Desika, R., & Hancock, J. (2002). Hydrogen peroxide signaling. Current Openion in Plant Biology, 5, 388-395. doi: 10.1016/s1369-5266(02)00282-0.##Niazkhani, S. M., Mandolakani, B., Jafari, M., & Rasouli Sadkiani, M. M. (2018). The effect of soil zinc deficiency on the activity of antioxidant enzymes and biochemical parameters in bread wheat. Crop Physiology Journal, 11(41), 5-27. [In Persian]. ‎ doi: 20.1001.1.2008403.1398.11.41.1.6.##Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from saltstress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6), 596-604. doi: 10.1016/j.jplph.2012.01.004.##Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 975(3), 384-394. doi: 10.1016/S0005-2728(89)80347-0.##Prasad, R., & Power. J. F. (1997). Soil Fertility Mmanagement for Ssustainabl Agriculture. 1st Edition. CRC Press. 382 p.##Qiao, K., Fang, C., Chen, B., Liu, Z., Pan, N., Peng, H., Hao, H., Xu, M., Wu, J., &  Liu, S. (2020). Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone Haliotis discus hannai Ino. World Journal of Microbiology & Biotechnology, 36, 115. doi: 10.1007/s11274-020-02892-5.##Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature & Science, 1(1), 34-40. doi: 10.7537/marsnsj170119.06.##Seki, M., Narusaka, M., & Ishida, J. (2005) Monitoring the expression proles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31, 279-292. doi: 10.1046/j.1365-313x.2002.01359.x.##Shafi, A., Gill, T., Sreenivasulu, Y., Kumar, S., Ahuja, P. S., & Singh, A. K. (2015). Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguineaProtoplasma252(1), 41-51. doi: 10.1007/s00709-014-0653-9.##Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 217037. doi: 10.1155/2012/217037.##Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed  the world 10. Past successes and future challenges to the role played by wheat in global food  security. Food Security, 5(3), 291-317. doi: 10.1007/s12571-013-0263-y.##Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiologia Plantarum121(1), 58-65.‏ doi: 10.1111/j.0031-9317.2004.00294.x.##Somboonwatthanaku, I., Dorling, S., Leung, S., & McManus, M. T. (2010). Proline biosynthetic gene expression in tissue cultures of rice (Oryza sativa L.) in response to saline treatment. Plant Cell, Tissue & Organ Culture, 103, 369-376. doi: 10.1007/s11240-010-9790-9.##Su, M., Li, X. F., Ma, X. Y., Peng, X. J., Zhao, A. G., Cheng, L. Q., Chen, S. Y., & Liu, G. S. (2011). Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Science181(6), 652-659.‏ doi: 10.1016/j.plantsci.2011.03.002.##Turkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental & Experimental Botany, 67(1), 2-9. doi: 10.1016/j.envexpbot.2009.05.008.##Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35, 753-759. doi: 10.1007/s00726-008-0061-6.##Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. doi: 10.1016/j.scienta.2004.04.009.##Wang, M., Zhao, X., Xiao, Z., Yin, X., Xing, T., & Xia, G. (2016). A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Molecular Biology91(1-2), 115-130.‏ doi: 10.1007/s11103-016-0446-y.##Jing, Yd., He, Zl, & Yang, Xe. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8, 192-207. doi: 10.1631/jzus.2007.B0192.##Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., & Xia, G. (2020). How plant hormones mediate salt stress responses. Trends in Plant Science25(11), 1117-1130. doi: 10.1016/j.tplants.2020.06.008.##Zamocky, M., Furtmüller, P. G., & Obinger, C. (2008). Evolution of catalases from bacteria to humans. Antioxidants & Redox Signaling, 10(9), 1527-1548. doi: 10.1089/ars.2008.2046.##Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant & Cell Physiology, 38(10), 1095-1102. doi: 10.1093/oxfordjournals.pcp.a029093.##Zhou, Y., Tang, N., Huang, L., Zhao, Y., Tang, X., & Wang, K. (2018). Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences, 19(1), 252. doi: 10.3390/ijms19010252.