Association analysis for proline and fructan content in barley (Hordeum vulgare L.) under late spring cold stress using microsatellite markers

Document Type : Research Paper

Authors

1 Department of Genetics and Plant Breeding, College of Agriculture, Tarbiat Modares University, Tehran, Iran.

2 Department of Genetics and Plant Breeding, College of Agriculture, Tarbiat Modares University, Tehran, , Iran.

3 Urmia University

4 Department of Biotechnology, College of Agriculture, University of Tehran, Tehran, Iran.

Abstract

Introduction
Biotic and abiotic environmental stresses reduce the quantity and quality of agricultural products. Late spring cold stress, if it occurs, can cause significant damage to farmers and producers depending on the growth stage of the crop plants. Association analysis allows for the rapid and initial identification of quantitative trait loci based on linkage disequilibrium. This method is a powerful tool for explaining the genetics of complex agricultural traits and identifying alleles controlling these traits. The objective of this study was to evaluate the genetic diversity, population structure, linkage disequilibrium pattern and association analysis of some physiological traits of cultivated barley genotypes under late spring cold stress conditions using microsatellite (SSR) markers.

Materials and methods
The plant materials of this study were 60 cultivated barley genotypes including 20 commercial and 40 landraces, which were obtained from the Seed and Plant Improvement Research Institute, Karaj, Iran. The experiment was carried out as a factorial in a completely randomized design with three replications. The studied genotypes were placed under cold stress (+8 and -2 °C) at the reproductive stage (heading and flowering, Zadoks 68-50) and physiological data were measured and collected. Analysis of variance and comparison of means were performed by Tukey’s test at a probability level of 5% using SAS software version 9.4. software version 9.4. Also, genomic DNA was extracted using the CTAB method and its quality and quantity were determined using 1% agarose gel electrophoresis and spectrophotometer, respectively. To assess molecular diversity among the studied barley genotypes, DNA samples were amplified by 20 SSR markers using polymerase chain reaction (PCR) and the PCR products were loaded on metaphor-agarose gels. After electrophoresis, the bands in the gels were scored as co-dominant, and then the number of alleles, common allele frequency, marker discrimination power, polymorphic information content (PIC) and gene diversity were calculated using POWER MARKER software. Effective population structure analysis was also conducted using the Bayesian method in the Structure software. To identify genomic regions associated with the measured traits, association analysis based on mixed linear model (MLM) was conducted in TASSEL software, considering the population structure (Q) and the kinship (K) matrices as covariate variables.

Research findings
The results of the variance analysis for the physiological data indicated significant differences in all studied traits among barley genotypes under both temperature conditions of 8 °C and -2 °C. According to the mean comparison results, the highest amount of proline was observed in the local varieties Sahra and Jonoob at 8 °C, while in the -2 °C conditions, the highest levels were found in the genotypes Naik and Zahek. Conversely, the lowest proline levels at both temperature conditions were identified in the genotypes TN-02-6297 and TN-02-6400. Therefore, the two local varieties Naik and Zahek, with their higher proline levels at -2 °C, are introduced as cold-tolerant genotypes against late spring frost stress. Regarding fructan, this study also revealed that at 8 °C, the highest and lowest fructan levels were observed in the genotypes TN-02-6734 and TN-02-4975, respectively. Additionally, under -2 °C conditions, these values were recorded in the genotypes Bahman and TN-02-4952. Polymorphic information content varied from 0.59 for the marker Bmag0007 to 0.82 for the marker Bmag0032. The gene diversity ranged from 0.63 to 0.84, with an average of 0.74, and the frequency of common alleles varied from 0.21 to 0.52. Population structure analysis indicated the presence of two subpopulations among the studied barley genotypes. The results of association analysis based on the mixed linear model (MLM) identified five significant marker-trait associations (P < 0.05). Among these, three markers (Bmag0518, Bmag0211, and Ebmac0674) were significantly associated with proline-controlling genes under -2 °C conditions, one marker (Bmag0223) was associated with proline-controlling genes under +8 °C conditions, and one marker (Bmag0173) was linked to fructan-controlling genes under +8 °C conditions. Additionally, no marker was identified with a significant association for fructan levels under -2 °C conditions.

Conclusion
The results of the association analysis in this study showed that five markers, Bmag0518, Bmag0211, Ebmac0674, Bmag0223 and Bmag0173, had a significant association with the proline and fructan contents in barley under cold stress conditions. These markers, after validation with complementary tests, can be utilized in breeding programs by marker-assisted selection (MAS) to improve cold resistance in barley.

Keywords

Main Subjects


Al-Maskri, A. H., Sajjad, M., & Khan, S. H. (2012). Association mapping: a step forward to discovering new alleles for crop improvement. International Journal of Agriculture & Biology, 14, 153-160. doi: 10.13140/2.1.1925.9524.##Atıcı, Ö., & Nalbantoǧlu, B. (2003). Antifreeze proteins in higher plants. Phytochemistry64(7), 1187-1196.‏ doi: 10.1016/S0031-9422(03)00420-5.##Bartlett, M. S. (1937). Properties of sufficiency and statistical test. Proceedings of the Royal Society A, 160, 268-282.##Bonman, J. M., Gu, Y., Coleman-Derr, D., Jackson, E. W., & Bockelman, H. E. (2011). Inferring geographic origin of barley (Hordeum vulgare L. subsp. vulgare) accessions using molecular markers. Genetic Resources & Crop Evolution, 58, 291-298. doi: 10.1007/s10722-010-9574-4.##Brbaklić, L., Trkulja, D., Mikić, S., Mirosavljević, M., Momčilović, V., Dudić, B.,  & Aćin, V. (2021). Genetic diversity and population structure of Serbian barley (Hordeum vulgare L.) collection during a 40-year long breeding period. Agronomy11(1), 118.‏ doi: 10.3390/agronomy11010118.##Breseghello, F., & Sorrells, M. E. )2006(. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sciece, 46, 1323- 1330. doi: 10.2135/cropsci2005.09-0305.##Carillo, P., & Gibon, Y. (2011). Protocol: Extraction and determination of proline. PrometheusWiki, 1-5. https://hdl.handle.net/11591/322173.##Chalecka, M., Kazberuk, A., Palka, J., & Surazynski, A. (2021). P5C as an interface of proline interconvertible amino acids and its role in regulation of cell survival and apoptosis. International Journal of Molecular Sciences22(21), 11763.‏ doi: 10.3390/ijms222111763.##Choudhir, G., & Vasistha, N. K. (2021). Engineering fructan biosynthesis against abiotic stress. In: Wani, S. H., Gangola, M. P., & Ramadoss, B. R. (Eds.). Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. pp. 145-170.‏ doi: 10.1007/978-3-030-80674-3_6.##Cozzolino, D., Degner, S., & Eglinton, J. (2016). Relationships between fructans content and barley malt quality. Food Analytical Methods, 9(7), 2010-2015. doi: 10.1007/s12161-015-0386-1.##Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x.##Enyew, M., Dejene, T., Lakew, B., & Worede, F. (2019). Clustering and principal component analysis of barley (Hordeum vulgare L.) landraces for major morphological traits from North Western Ethiopia. International Journal of Agricultural Science & Food Technology5(2), 58-63.‏ doi: 10.17352/2455-815X.000043.##FAO. (2020). FAOSTAT Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved June 15, 2020. http://www.fao.org/faostat/en/#home.##Gumede, M. T., Gerrano, A. S., Amelework, A. B., & Modi, A. T. (2022). Analysis of genetic diversity and population structure of cowpea (Vigna unguiculata L.) Walp) genotypes using single nucleotide polymorphism markers. Plants11(24), 3480.‏ doi: 10.3390/plants11243480.##Hajmansoor, S., Bihamta, M. A. , Nabipour, A., Mohammadi, A., Pirseyedi, M., & Nikkhah H. R. (2010). Genetic diversity in barley genotypes: II. Microsatellite markers and morphological traits. Seed & Plant Journal, 26(2), 150-172. [In Persian]. doi: 10.22092/spij.2017.110955.##Hajihashemi, S., Noedoost, F., Geuns, J. M., Djalovic, I., & Siddique, K. H. (2018). Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudianaFrontiers in Plant Science9, 1430.‏ doi: 10.3389/fpls.2018.01430.##Haghpanah, K., Mirfakhraee, S. R., Khodadadi, M., & Shamsifar, S. (2020). Study on genetic diversity of some barley (Hordeum vulgare L.) cultivars using SSR marker and physiological traits plant pigments and proline under late cold stress. Journal of Crop Breeding, 12(34), 199-209. [In Persian]. doi: 10.29252/jcb.12.34.199.##Hoban, S., Bruford, M. W., Funk, W. C., Galbusera, P., Griffith, M. P., Grueber, C. E., & Heuertz, M., Hunter, M. E., Hvilsom, C., Stroil, B. K., Kershaw, F., Khoury, C. K., Laikre, L., Lopes-Fernandes, M., MacDonald, A. J., Mergeay, J., Meek, M., Mittan, C., Mukassabi, T. A., O'Brien, D., Ogden, R., PALMA-SILVA, C., Ramakrishnan, U., Segelbacher, G., Shaw, R. E., Sjögren-Gulve,  p., Veličković, N., & Vernesi, C. (2021). Global commitments to conserving and monitoring genetic diversity are now necessary and feasible. Bioscience71(9), 964-976.‏ doi: 10.1093/biosci/biab054.##Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences23(9), 5186.‏ doi: 10.3390/ijms23095186.##Irsyadi, M. B., Sari, S. K., Oktiastuti, E., & Rineksane, I. A. (2024). Rapid genomic DNA extraction for Soybean (Glycine max L. Merr) using modified CTAB protocol to obtain high-quality DNA. Indian Journal of Biochemistry & Biophysics61(2), 97-104.‏ doi: 10.56042/ijbb.v61i2.7603.##Jiang, J., Guo, Z., Sun, X., Jiang, Y., Xie, F., & Chen, Y. (2023). Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research, 3(1), 1-7. 10.48130/GR-2023-0002.##Julca, I., Marcet-Houben, M., Cruz, F., Gómez-Garrido, J., Gaut, B. S., Díez, C. M., & Gabaldón, T. (2020). Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biology18, 148. doi: 10.1186/s12915-020-00881-6.‏##Kage, U., Kumar, A., Dhokane, D., Karre, S., & Kushalappa, A. C. (2016). Functional molecular markers for crop improvement. Critical Reviews in Biotechnology, 36(5), 917-930. doi: 10.3109/07388551.2015.1062743.##Karim, K., Rawda, A., Hatem, C. M., Mbarek, B. N., & Mokhtar, T. (2010). Analysis of genetic diversity and reltionships in local Tunisian barley by RAPD and SSR analysis. African Journal of Biotechnology, 9(44), 7429. doi: 10.5897/AJB2010.000-3313.##Khodayari, H., Saeidi, H., Roofigar, A., Rahiminejad, M. R., Pourkheirandish, M., & Komatsuda, T. (2012). Genetic diversity of cultivated barley landraces in Iran measured using microsatellites. International Journal of Bioscience, Biochemistry & Bioinformatics, 2(4), 287-290. doi: 10.7763/IJBBB.2012.V2.118.##Latutrie, M., Gourcilleau, D., & Pujol, B. (2019). Epigenetic variation for agronomic improvement: An opportunity for vegetatively propagated crops. American Journal of Botany, 106(10), 1281. doi: 10.1002/ajb2.1357.##Liu, M., Li, Y., Ma, Y., Zhao. Q., Stiller, J., Feng, Q., Tian, Q., Liu, D., Han, B., & Liu, C. (2020). The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnology Journal, 18(2), 443-456. doi: 10.1111/pbi.13210.##Márquez-López, R. E., Loyola-Vargas, V. M., & Santiago-García, P. A. (2022). Interaction between fructan metabolism and plant growth regulators. Planta255(2), 49. doi: 10.1007/s00425-022-03826-1.##Ministry of Agriculture Jihad. (2023). Agricultural Statistical Bulletin, Cropping year 2021-2022. Vol. 1. Crop Plants. Reports on the area, production and yield of crop plants. Information and Communication Technology Center, Ministry of Agriculture Jihad, Tehran, Iran. [In Persian].##Miranda, C., Bilavcik, A., Chaloupka, R., Dreisiebner-Lanz, S., Gąstoł, M., Luedeling, E., & McCallum, S. (2019). EIP-AGRI Focus Group. Protecting fruit production from frost damage. Minipaper 5: Phenology and critical temperatures. European Commission. https://ec.europa.eu/eip/agriculture/sites/default/files/fg30_mp5_phenology_critical_temperatures.pdf.##Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants - salient statistical tools and considerations. Crop Science, 43(4), 1235-1248. doi: 10.2135/cropsci2003.1235.##Mojirsheibani, E., Peyghambari, S. A., Yazdisamadi, B., Naghavi, M. R., & Ghadrdan, K. (2013). Evaluation of genetic diversity of barley (Hordeum vulgare L.) cultivars and relationship among traits using agronomic characteristics and molecular markers. Iranian Journal of Crop Sciences, 15(1), 46-59. [In Persian]. dor: 20.1001.1.15625540.1392.15.1.5.3.##Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147(3), 969-977. doi: 10.1104/pp.108.118232.##Nabati, J., Nezami, A., Mirmiran, S. M., Hasanfard, A. R., Hojjat, S. S., & Bagheri, A. (2020). Freezing tolerance in some lentil genotypes under controlled conditions. Seed & Plant Journal, 36(2), 183-205.  doi: 10.22092/sppi.2020.123186.##Nezami, A., Nabati, J., Mirmiran, S. M., Hasanfard, A., & Mohammadi, M. (2022). How does the freezing stress in the seedling stage affect the chickpea’s morpho-physiological and biochemical attributes? Gesunde Pflanzen, 75, 1107-1119. doi: 10.1007/s10343-022-00771-7.##Niu, S., Song, Q., Koiwa, H., Qiao, D., Zhao, D., Chen, Z., & Wen, X. (2019). Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou Plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC Plant Biology19, 328. doi: 10.1186/s12870-019-1917-5.##Park, L. (2019). Population-specific long-range linkage disequilibrium in the human genome and its influence on identifying common disease variants. Scientific Reports9(1), 11380.‏ doi: 10.1038/s41598-019-47832-y.##Pritchard, J. K., & Donnelly, P. (2001). Case-control studies of association in structured or admixed populations. Theoretical Population Biology, 60(3), 227-237. doi: 10.1006/tpbi.2001.1543.##Roy, J. K., Smith, K. P., Muehlbauer, G. J., Chao, S., Close, T. J., & Steffenson, B. J. (2010). Association mapping of spot blotch resistance in wild barley. Molecular Breeding, 26, 243-256. doi: 10.1007/s11032-010-9402-8.##Shahmoradi, S., & Zahrawi, M. (2014). Identification of traits related to drought tolerance in barley genotypes originated from arid climates of Iran. Journal of Crop Improvement, 16(1), 23-41. [In Persian]. doi: 10.22059/jci.2014.51940.##Shamsifar, S., Mirfakhraei, R., & Haghpanah, K. (2021). Study of genetic diversity in some barley (Hordeum vulgar L.) cultivars using microsatellite markers and physiological traits of fructan and ion leakage under late spring freeze stress. Plant Production Technology, 13(1), 163-177. [In Persian]. doi: 10.22084/PPT.2021.22542.2016.##Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611.##Shuorvazdi, A., Mohammadi, S. A., Norozi, M., & Sadeghzadeh, B. (2014). Molecular analysis of genetic diversity and relationships of barley landraces based on microsatellite markers. Plant Genetic Researches, 1(1), 51-64. [In Persian]. doi: 10.29252/pgr.1.1.51.##Shroyer, J. P., Mikesell, M. E., & Paulsen, G. M. (1995). Spring freeze injury to Kansas wheat. Publication of Kansas State University. pp. 1-12.##Singh, I. M., Ngangkham, U., Sarika, K., Devi, Y. S., Singh, T. S., Singh, T. B., & Laha, R. (2024a). Genetic diversity and DNA fingerprinting of rice varieties of Manipur using microsatellite markers. Electronic Journal of Plant Breeding15(2), 504-514.‏ doi: 10.37992/2024.1502.063.##Singh, P., Sharma, A., Tandon, V., Salgotra, R. K., Sharma, M., Gupta, V., & Sharma, D. (2024b). Genetic diversity and population structure of Bael [Aegle marmelos (L.) Correa] genotypes using molecular markers in the North-Western plains of India. Scientific Reports14(1), 18032. doi: 10.1038/s41598-024-69030-1.##Spataro, G., Tiranti, B., Arcaleni, P., Bellucci, E., Attene, G., Papa, R., Spagnoletti, Z. P., & Negri, V. (2011). Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical & Applied Genetics, 122, 1281-1291. doi: 10.1007/s00122-011-1530-y.##Tahmasbali, M., Darvishzadeh, R., Fayaz Moghaddam, A., & Alipour, H. (2021). Selection of tolerant genotypes to broomrape Orobanche cernua stress in oriental tobacco Nicotiana tabacum genotypes using stress tolerance indices. Journal of Applied Research in Plant Protection, 9(4), 83-100. [In Persian]. doi: 10.22034/arpp.2021.12247.##Tolipov, X. T. (2021). Determination of inulin in plants. Вестник магистратуры, 4-1(115), 16-18.‏ https://cyberleninka.ru/article/n/determination-of-inulin-in-plants.##Tricase, C., Amicarelli, V., Lamonaca, E., & Ran, R. L. (2018). Economic analysis of the barley market and related uses. In: Tadele, Z. (Ed.). Grasses as Food and Feed. IntechOpen. pp. 25-46. doi: 10.5772/intechopen.78967.##Valluru, R., Lammens, W., Claupein, W., & Van den Ende, W. (2008). Freezing tolerance by vesicle-mediated fructan transport. Trends in Plant Science, 13(8), 409-414. doi: 10.1016/j.tplants.2008.05.008.##Vus, N. A., Kobyzeva, L. N., & Bezuglaya, O. N. (2020). Determination of the breeding value of collection chickpea (Cicer arietinum L.) accessions by cluster analysis. Vavilov Journal of Genetics & Breeding24(3), 244.‏ doi: 10.18699/VJ20.617.##Wang, H., Blakeslee, J. J., Jones, M. L., Chapin, L. J., & Dami, I. E. (2020). Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines. Plant Science, 293, 10437. doi: 10.1016/j.plantsci.2020.110437.##Wang, J., Sun, G., Ren, X., Li, C., Liu, L., Wang, Q., Du, B., & Sun, D. (2016). QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genetics, 17, 103. doi: 10.1186/s12863-016-0409-y.##Wang, Q., Sun, G., Ren, X., Wang, J., Du, B., Li, C., & Sun, D. (2017). Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genetics, 18, 94. doi: 10.1186/s12863-017-0562-y.##Wu, W., Bang, S., Bleecker, E. R., Castro, M., Denlinger, L., Erzurum, S. C., & Wenzel, S. E. (2019). Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe asthma. American Journal of Respiratory & Critical Care Medicine199(11), 1358-1367.‏ doi: 10.1164/rccm.201808-1543OC.##Xu, W., Liu, Q., Xu, W., Zhou, Z., Pham, D. T., Lou, P., & Hu, J. (2017). Energy condition perception and big data analysis for industrial cloud robotics. Procedia Cirp, 61, 370-375.‏ doi: 10.1016/j.procir.2016.11.164.##Yu, J., & Buckler, E. S. (2006). Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 17(2), 155-160. doi: 10.1016/j.copbio.2006.02.003.##Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. doi: 10.1111/j.1365-3180.1974.tb01084.x.##Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell167(2), 313-324. doi: 10.1016/j.cell.2016.08.029.