Abd El-Mohsen, A. A., Abd El-Shafi, M. A., Gheith, E. M. S., & Suleiman, H. S. (2015). Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes.
Advances in Agriculture & Biology,
4, 19-30. doi:
10.15192/PSCP.AAB.2015.4.1.193.##Achenef, G. (2022). Advancement of analytical models quantifying G × E interactions and stability analysis in multi-environment trial.
International Journal of Research in Agricultural Sciences,
9(4), 2348-3997.##Akbarpour, O. A., Dehghani, H., Sorkhi-Lalelo, B., & Kang, M. S. (2016). A SAS macro for computing statistical tests for two-way table and stability indices of nonparametric method from genotype-by-environment interaction.
Acta Scientiarum Agronomy,
38(1), 35-50. doi:
10.4025/actasciagron. v38i1.26381.##Al-Ashkar, I. (2024). Multivariate analysis techniques and tolerance indices for detecting bread wheat genotypes of drought tolerance.
Diversity,
16(8), 489. doi:
10.3390/d16080489.##Al-Ashkar, I., Sallam, M., Almutairi, K. F., Shady, M., Ibrahim, A., & Alghamdi, S. S. (2023). Detection of high-performance wheat genotypes and genetic stability to determine complex interplay between genotypes and environments.
Agronomy,
13(2), 585. doi:
10.3390/agronomy13020585.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2021). Dissection of the genetic basis of genotype-by-environment interactions for grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars.
Scientific Reports,
11, 17742. doi:
10.1038/s41598-021-96576-1.##Aswidinnoor, H., Listiyanto, R., Rahim, S., Holidin, H., Setiyowati, H., Nindita, A., Ritonga, A. W., Marwiyah, S., & Suwarno, W. B. (2023). Stability analysis, agronomic performance, and grain quality of elite new plant type rice lines (
Oryza sativa L.) developed for tropical lowland ecosystem.
Frontiers in Sustainable Food Systems,
7, 1147611. doi:
10.3389/fsufs.2023.1147611.##Balakrishnan, D., Subrahmanyam, D., Badri, J., Raju, A. K., Rao, Y. V., Beerelli, K., Mesapogu, S., & Surapaneni, M. (2016). Genotype × environment interactions of yield traits in backcross introgression lines derived from
Oryza sativa cv. Swarna/
Oryza nivara.
Frontiers in Plant Science,
7, 1530. doi:
10.3389/fpls.2016.01530.##Balbaa, M. G., Osman, H. T., Kandil, E. E., Javed, T., Lamlom, S. F., Ali, H. M., Kalaji, H. M., & Wróbel, J. (2022). Determination of morpho-physiological and yield traits of maize inbred lines (
Zea mays L.) under optimal and drought stress conditions.
Frontiers in Plant Science,
13, 959203. doi:
10.3389/fpls.2022.959203.##Barati, A., Zali, H., Lakzadeh, I., Koohkan, Sh., Jafarby, J., Hosseinpour, A., Jabari, M., Marzoghiyan, A., & Kheirgo, M. (2020). Evaluation of yield stability of barley promising lines using AMMI and SHMM methods.
Cereal Research,
10(3), 245-257. [In Persian]. doi:
10.22124/cr.2021.18343.1637.##Crossa, J. (1990). Statistical analysis of multilocation trials.
Advances in Agronomy,
44, 55-85. doi:
10.1016/S0065-2113(08)60818-4.##Crossa, J., Cornelius, P., Seyedsadr, M., & Byrne, P. (1993). A shifted multiplicative model cluster analysis for grouping environments without genotypic rank change.
Theoretical & Applied Genetics,
85, 577-586. doi:
10.1007/BF00220916.##Crossa, J., Vargas, M., van Eeuwijk, F. A., Jiang, C., Edmeades, G. O., & Hoisington, D. (1999). Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables.
Theoretical & Applied Genetics,
99, 611-625. doi:
10.1007/s001220051276.##Cruz, C. D. (2013). Genes: A software package for analysis in experimental statistics and quantitative genetics.
Acta Scientiarum Agronomy,
35(3), 271-276. doi:
10.4025/actasciagron.v35i3.21251.##da Silva, K. J., Teodoro, P. E., da Silva, M. J., Teodoro, L. P. R., Cardoso, M. J., Godinho, V. D. P. C., & de Menezes, C. B. (2021). Identification of mega‐environments for grain sorghum in Brazil using GGE biplot methodology.
Agronomy Journal,
113(4), 3019-3030. doi:
10.1002/agj2.20707.##Devi, S., Bhagta, S., & Kumari, N. (2024). Multivariate techniques for research analysis in plant breeding.
Agriallis,
6(3), 6-10.##Dia, M., Wehner, T. C., Hassell, R., Price, D. S., Boyhan, G. E., Olson, S., King, S., Davis, A. R., Tolla, G. E., Bernier, J., & Juarez, B. (2016). Value of locations for representing mega-environments and for discriminating yield of watermelon in the U.S.
Crop Science,
56(4), 1726-1735. doi:
10.2135/cropsci2015.11.0698.##Ebadi, A. A., Sharifi, P., & Hallajian, M. T. (2022). Stability analysis of grain yield of rice mutants by multivariate methods and superiority index.
Journal of Agricultural Science & Sustainable Production,
32(2), 313-332. [In Persian]. doi:
10.22034/saps.2021.45415.2668.##Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties.
Crop Science,
6(1), 36-40. doi:
10.2135/cropsci1966.0011183X000600010011x.##Ehyaei, M., Mostafavi, Kh., Bakhtiar, F., & Mohammadi, A. (2022). Yield stability of bread wheat genotypes using AMMI and GGE biplot analysis.
Cereal Research,
12(2), 147-165. [In Persian]. doi:
10.22124/CR.2023.23333.1746.##Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., & Carlsson, A. S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (
Sorghum bicolor L. Moench).
PLoS One,
16(10), e0258211. doi:
10.1371/journal.pone.0258211.##Esmaeilzadeh-Moghaddam, M., Tahmasebi, S., Ayeneh, G. A. L. A., Akbari Moghadam, H., Mahmoudi, K., Sayyahfar, M., Tabib Ghaffari, S. M., & Zali, H. (2018). Yield stability evaluation of bread wheat promising lines using multivariate methods.
Cereal Research,
8(3),
333-344. [In Persian]. doi:
10.22124/c.2018.10654.1405.##Farhad, Md., Tripathi, S. B., Singh, R. P., Joshi, A. K., Bhati, P. K., Vishwakarma, M. K., Mondal, S., Malik, A. A., & Kumar, U. (2022). Multi-trait selection of bread wheat ideotypes for adaptation to early sown condition.
Crop Science,
62(1), 67-82. doi:
10.1002/csc2.20628.##Farshadfar, E., Mohammadi, R., Rasoli, V., & Khoshakhlagh, F. (2012). Chromosomal localization of the genes controlling phenotypic stability in rye using GGE-biplot.
Annals of Biological Research,
3(3), 1345-1356.##Ferreira, D. F., Demetrio, C. G. B., Manly, B. F. J., Machado, A. A., & Vencovsky, R. (2006). Statistical models in agriculture: Biometrical methods for evaluating phenotypic stability in plant breeding.
Cerne Lavras, 12(4), 373-388.##Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme.
Australian Journal of Agricultural Research,
14(6), 742-754. doi:
10.1071/AR9630742.##Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis.
Biometrika,
58(3), 453-467. doi:
10.1093/biomet/58.3.453.##Gauch, H. G. (1988). Model selection and validation for yield trials with interaction.
Biometrics,
44(3), 705-715. doi:
10.2307/2531585.##Gauch, H. G. (1992). Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs. Elsevier, Amsterdam.##Gauch, H. G., & Moran, D. R. (2019). AMMISOFT for AMMI analysis with best practices.
BioRxiv, 538454. doi:
10.1101/538454.##Gauch, H. G., Piepho, H. P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations.
Crop Science,
48(3), 866-889. doi:
10.2135/cropsci2007.09.0513.##Gauch, H. G., & Zobel, R. W. (1988). Predictive and postdictive success of statistical analysis of yield trials.
Theoretical & Applied Genetics,
76, 1-10. doi:
10.1007/BF00288824.##GENSTAT. (2008). GENSTAT, 12
th Edition. VSN International Ltd. Hemel Hempstead, UK. Available online:
http://www.vsni.co.uk.##Gerema, G., Mengistu, G., Bayisa, T., & Balcha, U. (2024). Application of univariate, multivariate, and mixed models to the stability analysis of Ethiopian tetraploid wheat cultivars under irrigation condition.
Agronomy for Sustainable Development,
44(1), 20574. doi:
10.1002/agg2.20574.##Gonçalves, V. M. L., Crevelari, J. A., Catarina, R. S., de Souza, Y. P., & Pereira, M. G. (2025). Adaptability and stability analysis via GGE biplot in single, double, and interpopulation maize hybrids.
Scientific Reports,
15, 5065. doi:
10.1038/s41598-025-89416-z.##Gower, J. C. (1967). Multivariate analysis and multidimensional geometry.
Statistician,
17(1), 13-28. doi:
10.2307/2987199.##Hanson, W. D. (1970). Genotypic stability.
Theoretical & Applied Genetics,
40(5), 226-231. doi:
10.1007/BF00285245.##Hatami Maleki, H., Darvishzadeh, R., & Zeinalzadeh-Tabrizi, H., (2024a). Identification of resistance sources against
Orobanche cernua in tobacco germplasm.
Journal of Crop Health,
76(3), 701-711. doi:
10.1007/s10343-024-00987-9.##Hatami Maleki, H., Vaezi, B., Jozeyan, A., Mirzaei, A., Darvishzadeh, R., Dashti, S., Arshad, M., Zeinalzadeh-Tabrizi, H., & Kordrostami, M. (2025). Grass pea dual purpose dry matter and seed yields in rainfed conditions across diverse environments.
Scientific Reports,
15, 4960. doi:
10.1038/s41598-025-89050-9.##Hatami Maleki, H., Vaezi, B., Jozeyan, A., Mirzaei, A., Darvishzadeh, R., Dashti, S., Abdi, H., & Zeinalzadeh-Tabrizi, H. (2024b). Deciphering genotype-by-environment interaction of grass pea genotypes under rainfed conditions and emphasizing the role of monthly rainfall.
BMC Plant Biology,
24(1), 559. doi:
10.1186/s12870-024-05256-5.##Hayward, A. D., Bosemark, N., & Romagosa, I. (1993). Plant Breeding. Chapman & Hall, UK.##Hilmarsson, H. S., Rio, S., & Sanchez, J. I. (2021). Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, factorial regression model and linear mixed model.
Agronomy,
11(3), 499. doi:
10.3390/agronomy11030499.##Hussein, M. A., Bjornstad, A. S., & Aastveit, A. H. (2000). SASG × ESTAB: A SAS program for computing genotype × environment stability statistics.
Agronomy Journal,
92(3), 454-459. doi:
10.2134/agronj2000.923454x.##Ingvordsen, C. H., Backes, G., Lyngkjaer, M. F., Peltonen-Sainio, P., Jahoor, A., Mikkelsen, T. N., & Jørgensen, R. B. (2015). Genome-wide association study of production and stability traits in barley cultivated under future climate scenarios.
Molecular Breeding,
35, 84. doi:
10.1007/s11032-015-0287-5.##IRRISTAT for Windows. (2021). Biometrics Unit. International Rice Research Institute. Available online:
https://international-rice-research-institute.software.informer.com.##Jobson, J. D. (1992). Applied Multivariate Data Analysis: Volume II. Springer-Verlag, New York, INC. 731 p.##Johnson, R. A., & Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. Third Edition. Prentice Hall.##Jokarfard, V., Rabiei, B., Laki, E. S., & Börner, A. (2024). Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran.
Frontiers in Plant Science,
15, 1487106. doi:
10.3389/fpls.2024.1487106.##Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis. In: Principal Component Analysis. Springer, New York. pp: 115-128. doi:
10.1007/978-1-4757-1904-8_7.##Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika,
23, 187-200. doi:
10.1007/BF02289233.##Kang, M. S. (2020). Genotype-environment interaction and stability analyses: An update. In: Kang, M. S. (Ed.). Quantitative Genetics, Genomics, and Plant Breeding. Second Edition. CABI. pp: 140-161. doi:
10.1079/9781789240214.0140.##Karimizadeh, R., Dehghani, H., & Dehghanpour, Z. (2006). Using cluster analysis for stability of maize hybrids.
Journal of Crop Production & Processing,
10(3), 337-348. doi:
20.1001.1.24763594.1385.10.3.27.6.##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., & Armion, M. (2020). Evaluation of genotype × environment interaction and determining grain yield stability of durum wheat genotypes in uniform regional yield trials in semi-warm rainfed areas.
Plant Genetic Research,
7(2), 25-40. doi:
10.52547/pgr.7.2.3.##Karimizadeh, R., Hoseinpour, T., Alt Jafarby, J., Shahbazi Homonloo, K., Armion, M., & Sharifi, P. (2021). Grain yield stability analysis of durum wheat genotypes using GGE biplot model in rainfed conditions.
Iranian Dryland Agronomy Journal,
9(2), 217-235. doi:
10.22092/idaj.2020.343312.310.##Kebede, G., Worku, W., Jifar, H., & Feyissa, F. (2023). GGE biplot analysis of genotype by environment interaction and grain yield stability of oat (
Avena sativa L.) in Ethiopia.
Agrosystems,
Geosciences & Environment,
6, e20410. doi:
10.1002/agg2.20410.##Khan, M. M. H., Rafii, M. Y., Ramlee, S. I., Jusoh, M., & Al Mamun, M. (2021). AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (
Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs).
Scientific Reports,
11, 22791. doi:
10.1038/s41598-021-01411-2.##Lima, G. W., Silva, C. M., Mezzomo, H. C., Casagrande, C. R., Olivoto, T., Borem, A., & Nardino, M. (2022). Genetic diversity in tropical wheat germplasm and selection via multitrait index.
Agronomy Journal,
114(2), 887-899. doi:
10.1002/agj2.20991.##Lin, C. S., & Butler, G. (1990). Cluster analysis for analyzing two-way classification data.
Agronomy Journal,
82(2), 344-348. doi:
10.2134/agronj1990.00021962008200020034x.##Lin, C. S., & Thompson, B. (1975). An empirical method of grouping genotypes based on a linear function of the genotype-environment interaction.
Heredity, 34, 255-263. doi:
10.1038/hdy.1975.28.##Ma, C., Liu, C., & Ye, Z. (2024). Influence of genotype × environment interaction on yield stability of maize hybrids with AMMI model and GGE biplot.
Agronomy,
14(5), 1000. doi:
10.3390/agronomy14051000.##Maniruzzaman, M.Z., Islam, F., Begum, M.A.A., Khan, M., Amiruzzaman, M., Hossain, A. 2019. Evaluation of yield stability of seven barley (
Hordeum vulgare L.) genotypes in multiple environments using GGE biplot and AMMI model.
Open Agriculture, 4, pp. 284–293.
https://doi.org/10.1515/opag-2019-0027.##Merrick, L. F., Burke, A. B., Zhang, Z., & Carter, A. H. (2022). Comparison of single-trait and multi-trait genome-wide association models and inclusion of correlated traits in the dissection of the genetic architecture of a complex trait in a breeding program.
Frontiers in Plant Science,
12, 772907. doi:
10.3389/fpls.2021.772907.##Meyer, K. (2009). Factor-analytic models for genotype × environment type problems and structured covariance matrices.
Genetics Selection Evolution,
41(1), 21. doi:
10.1186/1297-9686-41-21.##Mungomery, V. E., Shorter, R., & Byth, D. E. (1974). Genotype × environment interactions and environmental adaptation. I. Pattern analysis - Application to soya bean populations.
Australian Journal of Agricultural Research,
25, 59-72.##Najafi Mirak, T., Dastfal, M., Siahfar, M., Farzadi, H., Sasani, S., & Zali, H. (2024). Stability analysis of durum wheat yield using SHMM and GGE biplot models.
Plant Production,
47(2), 161-478. [In Persian]. doi:
10.22055/ppd.2024.46214.2144.##Nataraj, V., Bhartiya, A., Singh, C. P., Devi, H. N., Deshmukh, M. P., Verghese, P., & Gupta, S. (2021). WAASB‐based stability analysis and simultaneous selection for grain yield and early maturity in soybean.
Agronomy Journal,
113(4), 3089-3099. doi:
10.1002/agj2.20753.##Nikzadeh Talebi, B., & Rabiei, B. (2025). Assessing grain yield stability of rice promising lines using GGE-biplot analysis.
Iranian Journal of Field Crop Science,
56(1), 37-50. [In Persian]. doi:
10.22059/ijfcs.2024.375029.655075.##Oliveira, I. C. M., Guilhen, J. H. S., Ribeiro, P. C. O., Gezan, S. A., Schaffert, R. E., Simeone, M. L. F., & Parrella, R. A. C. (2020). Genotype-by-environment interaction and yield stability analysis of biomass sorghum hybrids using factor analytic models and environmental covariates.
Field Crops Research,
257, 107929. doi:
10.1016/j.fcr.2020.107929.##Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis.
Methods in Ecology & Evolution,
11(6), 783-789. doi:
10.1111/2041-210X.13384.##Olivoto, T., & Nardino, M. (2021). MGIDI: Toward an effective multivariate selection in biological experiments.
Bioinformatics,
37(10), 1383-1389. doi:
10.1093/bioinformatics/btaa981.##Olivoto, T., Lúcio, A. D. C., da Silva, J. A. G., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019a). Mean performance and stability in multi‐environment trials I: Combining features of AMMI and BLUP techniques.
Agronomy Journal,
111(6), 2949-2960. doi:
10.2134/agronj2019.03.0220.##Olivoto, T., L'ucio, A. D. C., da Silva J. A., Sari, B. G., & Diel, M. I. (2019b). Mean performance and stability in multi-environment trials II: Selection based on multiple traits.
Agronomy Journal,
111(6), 2961-2969. doi:
10.2134/agronj2019.03.0221.##Pacheco, Á., Vargas, M., Alvarado, G., Rodríguez, F., Crossa, J., & Burgueño, J. (2015). GEA-R: Genotype × environment analysis with R for windows. version 4.1.##Padmaja, P. G., Kalaisekar, A., Tonapi, V. A., & Madhusudhana, R. (2022). A multi-season analysis of barnyard millet (
Echinochloa frumentacea) germplasm lines for shoot fly resistance and multi-trait stability.
Plant Breeding,
141, 399-407. doi:
10.1111/pbr.13011.##Piepho, H. P. (1999). Stability analysis using the SAS system.
Agronomy Journal,
91(1), 154-160. doi:
10.2134/agronj1999.00021962009100010024x.##Pour-Aboughadareh, A., Barati, A., Koohkan, S. A., Jabari, M., Marzoghian, A., Gholipoor, A., Shabazi Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics.
Bulletin of the National Research Centre,
46(1), 19. doi:
10.1186/s42269-022-00703-5.##Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., Mehrvar, M. R., Asadi, A., & Amini, A. (2021). Identification of salt-tolerant barley genotypes using multiple-trait index and yield performance at the early growth and maturity stages.
Bulletin of the National Research Centre,
45(1), 117. doi:
10.1186/s42269-021-00576-0.##Pour‐Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., & Siddique, K. H. (2019). STABILITYSOFT: A new online program to calculate parametric and non‐parametric stability statistics for crop traits.
Applications in Plant Sciences,
7(1), e01211. doi:
10.1002/aps3.1211.##Purchase, J. L. (1997). Parametric analysis to describe genotype-environment interaction and yield stability in winter wheat. Ph.D. Dissertation. University of the Free State. South Africa.##Rahmati, S., Azizi-Nezhad, R., Pour-Aboughadareh, A., Etminan, A., & Shooshtari, L. (2024). Analysis of genotype-by-environment interaction effect in barley genotypes using AMMI and GGE biplot methods.
Heliyon,
10(18), e38131. doi:
10.1016/j.heliyon.2024.e38131.##Ram, K., Munjal, R., Kesh, H., & Nyol, S. (2020). AMMI and GGE biplot analysis for yield stability of wheat genotypes under drought and high temperature stress.
International Journal of Current Microbiology & Applied Sciences,
9(5), 377-389. doi:
10.20546/ijcmas.2020.905.043.##Ramzi, E., Asghari, A., Sofalian, O., Mehraban, A., & Ebadi, A. (2020). Evaluation of seed yield stability of barley promising genotypes using principal coordinates analysis.
Journal of Plant Physiology & Breeding,
10(2), 59-68. doi:
10.22034/jppb.2020.13195.##Rezaeinia, M., Bihamta, M. R., Peighambari, S. A., Abbsi, A. R., & Ataei, R. (2022). Evaluation of the diversity of agro-morphological traits of barley under optimal and limited irrigation conditions and grouping its foreign germplasm using multivariate statistical methods.
Iranian Journal of Field Crop Science,
53(3), 121-133. doi:
10.22059/IJFCS.2021.320026.654809.##Rocha, J. R. A. S. C. R., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: Proposal and application on elephant grass breeding for bioenergy.
GCB Bioenergy,
10, 52-60. doi:
10.1111/gcbb.12443.##Rodrigues, P. C. (2018). An overview of statistical methods to detect and understand genotype-by-environment interaction and QTL-by-environment interaction.
Biometrical Letters,
55(2), 123-138. doi:
10.2478/bile-2018-0009.##Roostaei, M., Jafarzadeh, J., Roohi, E., Nazary, H., Rajabi, R., Haghparast, R., & Mirfatah, S. M. M. (2021). Grouping patterns of rainfed winter wheat test locations and the role of climatic variables.
Euphytica,
217(9), 183. doi:
10.1007/s10681-021-02879-1.##Roy, D. (2012). Biometrical Genetics: Analysis of Quantitative Variation. Alpha Science International Ltd. Oxford, UK. 410 p.##Sabaghnia, N. (2012). Multivariate statistical analysis of genotype × environment interaction in multi-environment trials of breeding programs.
Agriculture & Forestry,
56(1-4), 19-38.##Santos, F., & Marza, F. (2020). Selection of forage oat genotypes through GGE Biplot and BLUP.
BioRxiv, 03(10), 986422. doi:
10.1101/2020.03.10.986422.##Sehgal, D., Rosysrs, U., Mondal, S., Singh, R., Poland, J., & Dreisigacker, S. (2020). Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat.
Frontiers in Plant Science,
11, 197. doi:
10.3389/fpls.2020.00197.##Senguttuvel, P., Sravanraju, N., Jaldhani, V., Divya, B., Beulah, P., Nagaraju, P., Manasa, Y., Prasad, A. S. H., Brajendra, P., Gireesh, C., Anantha, M. S., Suneetha, K., Sundaram, R. M., Sheshu Madhav, M., Tuti, M. D., Subbarao, L. V., Neeraja, C. N., Bhadana, V. P., Rao, P. R., Voleti, S. R., & Subrahmanyam, D. (2021). Evaluation of genotype by environment interaction and adaptability in lowland irrigated rice hybrids for grain yield under high temperature.
Scientific Reports,
11(1), 15825. doi:
10.1038/s41598-021-95264-4.##Seyedsadr, M., & Cornelius, P. L. (1992). Shifted multiplicative model for nonadditive two-way tables.
Communications in Statistics - Simulation & Computation,
21(3), 807-822. doi:
10.1080/03610919208813051.##Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi, A. (2020). Stability of some rice genotypes based on WAASB and MTSI indices.
Iranian Journal of Genetics & Plant Breeding,
9(2), 1-11. doi:
10.30479/IJGPB.2021.14432.1283.##Shiri, M., Moharramnejad, S., Estakhr, A., Fareghi, Sh., Najafinezhad, H., Khavari Khorasani, S., Afarinesh, A., Anvari, K., & Eshraghi-Nejad, M. (2024). Determining the stability of new maize hybrids with WAASBY and MTSI indices.
Journal of Crop Breeding,
16(2), 14-28. [In Persian]. doi:
10.61186/jcb.16.2.14.##Shirzad, A., Asghari, A., Zali, H., Sofalian, O., & Mohammaddoust Chamanabad, H. (2022). Application of the multi-trait genotype-ideotype distance index in the selection of top barley genotypes in the warm and dry region of Darab.
Journal of Crop Breeding,
14, 65-76. [In Persian]. doi:
10.52547/jcb.14.44.65.##Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., Kumar, M., Singla, S., Shikha, K., & Madankar, K. (2021). Genotype × environment interaction and selection of maize (
Zea mays L.) hybrids across moisture regimes.
Field Crops Research, 270, 108224. doi:
10.1016/j.fcr.2021.108224.##Singh, C., Gupta, A., Gupta, V., Kumar, P., Sendhil, R., Tyagi, B. S., Singh, G., Chateath, R., & Singh, G. P. (2019). Genotype x environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models.
Crop Breeding & Applied Biotechnology,
19(3), 309-318. doi:
10.1590/1984-70332019v19n3a43.##Sperling, L., Ashby, J., Weltzien, E., Smith, M., & McGuire, S. (2001). Base-broadening for client-oriented impact: Insights drawn from participatory plant breeding field experience. In: Cooper, H. D., Spillane, C., & Hodgkins, T. (Eds.). Broadening the Genetic Bases of Crop Production. CAB International. pp: 419-435.##Sruthi, S. R., Laleeth, K. N., Kishore, D., Ivin, J. S., & Anbuselvam, Y. (2024). Principal component analysis in rice (
Oryza sativa L.) varieties for three seasons in Annamalai Nagar, an east coast region of Tamil Nadu.
Plant Science Today,
11(4), 634-639. doi:
10.14719/pst.4105.##Taghizadeh, A. A., Aminian Dehkordi, R., & Zeinanloo, A. A. (2020). Estimation of compatibility of some olive cultivars and genotypes in tarom climate conditions using non-parametric methods.
Iranian Journal of Horticultural Science,
51(3), 657-668. [In Persian]. doi:
10.22059/ijhs.2019.283230.1662.##Tahmasebi, S., Dastfal, M., Zali, H., & Rajaie, M. (2018). Rough tolerance evaluation of bread wheat cultivars and promising lines in the warm and dry climate of the south.
Cereal Research,
8(2), 209-225. doi:
10.22124/c.2018.10434.1398.##Tanin, M. J., Sharma, A., Saini, D. K., Singh, S., Kashyap, L., Srivastava, P., Mavi, G. S., Kaur, S., Kumar, V., Kumar, V., Grover, G., Chhuneja, P., & Sohu, V. S. (2022). Ascertaining yield and grain protein content stability in wheat genotypes having the
Gpc-B1 gene using univariate, multivariate, and correlation analysis.
Frontiers in Genetics,
13, 1001904. doi:
10.3389/fgene.2022.1001904.##Tekaia, (2016). Genome data exploration using correspondence analysis.
Bioinformatics & Biology Insights,
10, 59-72. doi:
10.4137/BBI.S39614.##Tsai, H. Y., Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A., & Jensen, J. (2020). Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat.
Scientific Reports,
10, 3347. doi:
10.1038/s41598-020-60248-7.##Verma, A., Chatrath, R., & Sharma, I. (2015). AMMI and GGE biplots for G×E analysis of wheat genotypes under rainfed conditions in central zone of India.
Journal of Applied & Natural Science,
7(2), 656-661. doi:
10.31018/jans.v7i2.662.##Westcott, B. (1986). Some methods of analyzing genotype-environment interaction.
Heredity,
56, 243-253. doi:
10.1038/hdy.1986.37.##Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J. E., Graef, G. L., Beavis, W. D., Diers, B. W., Song, Q., Cregan, P. B., Nelson, R., Mian, R., Shannon, J. G., McHale, L., Wang, D., Schapaugh, W., Lorenz, A. J., Xu, S., Muir, W. M., & Rainey, K. M. (2018). Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population.
G3 Genes, Genomes, Genetics,
8(2), 519-529. doi:
10.1534/g3.117.300300.##Yan, W. (2001). GGEbiplot—A windows application for graphical analysis of multienvironment trial data and other types of two-way data.
Agronomy Journal,
93(5), 1111-1118. doi:
10.2134/agronj2001.9351111x.##Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega‐environment investigation based on the GGE biplot.
Crop Science,
40(3), 597-605. doi:
10.2135/cropsci2000.403597x.##Yan, W., & Kang, M. S. (2003). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. First Edition. CRC Press. 288 p. doi:
10.1201/9781420040371.##Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications.
Canadian Journal of Plant Science,
86(3), 623-645. doi:
10.4141/P05-169.##Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., Chen, S., Peng, H., Nardino, M., & Jiang, X. (2022). Multi-trait selection for mean performance and stability of maize hybrids in megaenvironments delineated using envirotyping techniques.
Frontiers in Plant Science,
13, 1030521. doi:
10.3389/fpls.2022.1030521.##Zali, H., Barati, A., & Pour-Aboughadareh, A. R. (2022). Screening of barley elite genotypes using different selection indices based on multi-traits.
Crop Production,
15(4), 159-182. [In Persian]. doi:
10.22069/ejcp.2023.20071.##Zali, H., Sofalian, O., Hasanloo, T., Asgharii, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method.
Biological Forum – An International Journal,
7(2), 703-711.##Zhang, P. P., Song, H., Ke, X. W., Jin, X. J., Yin, L. H., Liu, Y., Qu, Y., Su, W., Feng, N. J., Zheng, D. F., & Feng, B. L. (2016). GGE biplot analysis of yield stability and test location representativeness in proso millet (
Panicum miliaceum L.) genotypes.
Journal of Integrative Agriculture,
15(6), 1218-1227. doi:
10.1016/S2095-3119(15)61157-1.##Zobel, R. W., Wright, M. J., & Gauch, H. G. (1988). Statistical analysis of a yield trial.
Agronomy Journal,
80(3), 388-393. doi:
10.2134/agronj1988.00021962008000030002x.##