A review of stability analysis methods in plant breeding with an emphasis on cereals, II: Multivariate approaches and future prospects

Document Type : Review Paper

Authors

1 Post-Doctoral Researcher, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Ph. D. Student, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

4 Professor, Department of Plant Production and Genetics, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

5 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

6 M. Sc. Graduate, Institut des Sciences du Cerveau de Toulouse, Toulouse, France

7 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

8 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Saravan, Saravan, Iran

Abstract

Introduction
In the field of cereal breeding, understanding the genotype × environment interaction (GEI) and the stability of various traits is recognized as the key to successfully producing high-quality agricultural products. GEI complicates the optimal selection of genotypes for target environments, making it essential to use appropriate statistical methods for analyzing and identifying stable and high-performing genotypes. Multivariate statistical methods are powerful tools for analyzing complex multi-environment trial (MET) data. Statistical methods such as cluster analysis (CA), principal component analysis (PCA), principal coordinate analysis (PCoA), factor analysis (FA), as well as additive main effects and multiplicative interaction (AMMI), genotype main effects and genotype × environment interaction biplot (GGE-Biplot), shifted multiplicative model (SHMM), and best linear unbiased prediction (BLUP) have been well used with high accuracy in analyzing MET data. In this study, multivariate statistical methods used in the analysis of GEI and genotypes stability from MET data and their advantages and disadvantages are reviewed. Moreover, the application of genome-wide association studies (GWAS), quantitative trait locus (QTL) analysis and QTL-environment interaction (QEI), and genomic prediction (GP) in the genetic analysis of stability, as well as the softwares used for calculating various multivariate stability methods, are introduced.

Research findings
The results of this study showed that the AMMI model, which combines analysis of variance and principal component analysis, has a high capability to evaluate main effects and interactions. Also, the GGE-Biplot method and various diagrams presented in this method effectively displays the main effects of genotype and its interaction with the environment. QTL analysis and the study of QEI in MET data also lead to the identification of linked markers to stability that can be used in molecular breeding of crop plants.

Conclusion
In the current study, multivariate methods used in GEI analysis were comprehensively and practically reviewed and introduced with the aim of better understanding GE interactions and identifying genotypes with broad adaptability and stable performance. The results of this study based on comprehensive studies showed that to make better decisions in selecting genotypes, it is necessary to consider all stability statistics, both univariate and multivariate, in the analysis of MET data. Recent advances in genomic technologies, including whole genome sequencing and GWAS, can significantly aid in understanding the complexities of GE and genetic of stability.

Keywords

Main Subjects


Abd El-Mohsen, A. A., Abd El-Shafi, M. A., Gheith, E. M. S., & Suleiman, H. S. (2015). Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes. Advances in Agriculture & Biology, 4, 19-30. doi: 10.15192/PSCP.AAB.2015.4.1.193.##Achenef, G. (2022). Advancement of analytical models quantifying G × E interactions and stability analysis in multi-environment trial. International Journal of Research in Agricultural Sciences, 9(4), 2348-3997.##Akbarpour, O. A., Dehghani, H., Sorkhi-Lalelo, B., & Kang, M. S. (2016). A SAS macro for computing statistical tests for two-way table and stability indices of nonparametric method from genotype-by-environment interaction. Acta Scientiarum Agronomy, 38(1), 35-50. doi: 10.4025/actasciagron. v38i1.26381.##Al-Ashkar, I. (2024). Multivariate analysis techniques and tolerance indices for detecting bread wheat genotypes of drought tolerance. Diversity, 16(8), 489. doi: 10.3390/d16080489.##Al-Ashkar, I., Sallam, M., Almutairi, K. F., Shady, M., Ibrahim, A., & Alghamdi, S. S. (2023). Detection of high-performance wheat genotypes and genetic stability to determine complex interplay between genotypes and environments. Agronomy, 13(2), 585. doi: 10.3390/agronomy13020585.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2021). Dissection of the genetic basis of genotype-by-environment interactions for grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars. Scientific Reports, 11, 17742. doi: 10.1038/s41598-021-96576-1.##Aswidinnoor, H., Listiyanto, R., Rahim, S., Holidin, H., Setiyowati, H., Nindita, A., Ritonga, A. W., Marwiyah, S., & Suwarno, W. B. (2023). Stability analysis, agronomic performance, and grain quality of elite new plant type rice lines (Oryza sativa L.) developed for tropical lowland ecosystem. Frontiers in Sustainable Food Systems, 7, 1147611. doi: 10.3389/fsufs.2023.1147611.##Balakrishnan, D., Subrahmanyam, D., Badri, J., Raju, A. K., Rao, Y. V., Beerelli, K., Mesapogu, S., & Surapaneni, M. (2016). Genotype × environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/ Oryza nivara. Frontiers in Plant Science, 7, 1530. doi: 10.3389/fpls.2016.01530.##Balbaa, M. G., Osman, H. T., Kandil, E. E., Javed, T., Lamlom, S. F., Ali, H. M., Kalaji, H. M., & Wróbel, J. (2022). Determination of morpho-physiological and yield traits of maize inbred lines (Zea mays L.) under optimal and drought stress conditions. Frontiers in Plant Science, 13, 959203. doi: 10.3389/fpls.2022.959203.##Barati, A., Zali, H., Lakzadeh, I., Koohkan, Sh., Jafarby, J., Hosseinpour, A., Jabari, M., Marzoghiyan, A., & Kheirgo, M. (2020). Evaluation of yield stability of barley promising lines using AMMI and SHMM methods. Cereal Research, 10(3), 245-257. [In Persian]. doi: 10.22124/cr.2021.18343.1637.##Crossa, J. (1990). Statistical analysis of multilocation trials. Advances in Agronomy, 44, 55-85. doi: 10.1016/S0065-2113(08)60818-4.##Crossa, J., Cornelius, P., Seyedsadr, M., & Byrne, P. (1993). A shifted multiplicative model cluster analysis for grouping environments without genotypic rank change. Theoretical & Applied Genetics, 85, 577-586. doi: 10.1007/BF00220916.##Crossa, J., Vargas, M., van Eeuwijk, F. A., Jiang, C., Edmeades, G. O., & Hoisington, D. (1999). Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theoretical & Applied Genetics, 99, 611-625. doi: 10.1007/s001220051276.##Cruz, C. D. (2013). Genes: A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35(3), 271-276. doi: 10.4025/actasciagron.v35i3.21251.##da Silva, K. J., Teodoro, P. E., da Silva, M. J., Teodoro, L. P. R., Cardoso, M. J., Godinho, V. D. P. C., & de Menezes, C. B. (2021). Identification of mega‐environments for grain sorghum in Brazil using GGE biplot methodology. Agronomy Journal, 113(4), 3019-3030. doi: 10.1002/agj2.20707.##Devi, S., Bhagta, S., & Kumari, N. (2024). Multivariate techniques for research analysis in plant breeding. Agriallis, 6(3), 6-10.##Dia, M., Wehner, T. C., Hassell, R., Price, D. S., Boyhan, G. E., Olson, S., King, S., Davis, A. R., Tolla, G. E., Bernier, J., & Juarez, B. (2016). Value of locations for representing mega-environments and for discriminating yield of watermelon in the U.S. Crop Science, 56(4), 1726-1735. doi: 10.2135/cropsci2015.11.0698.##Ebadi, A. A., Sharifi, P., & Hallajian, M. T. (2022). Stability analysis of grain yield of rice mutants by multivariate methods and superiority index. Journal of Agricultural Science & Sustainable Production, 32(2), 313-332. [In Persian]. doi: 10.22034/saps.2021.45415.2668.##Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36-40. doi: 10.2135/cropsci1966.0011183X000600010011x.##Ehyaei, M., Mostafavi, Kh., Bakhtiar, F., & Mohammadi, A. (2022). Yield stability of bread wheat genotypes using AMMI and GGE biplot analysis. Cereal Research, 12(2), 147-165. [In Persian]. doi: 10.22124/CR.2023.23333.1746.##Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., & Carlsson, A. S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS One, 16(10), e0258211. doi: 10.1371/journal.pone.0258211.##Esmaeilzadeh-Moghaddam, M., Tahmasebi, S., Ayeneh, G. A. L. A., Akbari Moghadam, H., Mahmoudi, K., Sayyahfar, M., Tabib Ghaffari, S. M., & Zali, H. (2018). Yield stability evaluation of bread wheat promising lines using multivariate methods. Cereal Research, 8(3), 333-344. [In Persian]. doi: 10.22124/c.2018.10654.1405.##Farhad, Md., Tripathi, S. B., Singh, R. P., Joshi, A. K., Bhati, P. K., Vishwakarma, M. K., Mondal, S., Malik, A. A., & Kumar, U. (2022). Multi-trait selection of bread wheat ideotypes for adaptation to early sown condition. Crop Science, 62(1), 67-82. doi: 10.1002/csc2.20628.##Farshadfar, E., Mohammadi, R., Rasoli, V., & Khoshakhlagh, F. (2012). Chromosomal localization of the genes controlling phenotypic stability in rye using GGE-biplot. Annals of Biological Research, 3(3), 1345-1356.##Ferreira, D. F., Demetrio, C. G. B., Manly, B. F. J., Machado, A. A., & Vencovsky, R. (2006). Statistical models in agriculture: Biometrical methods for evaluating phenotypic stability in plant breeding. Cerne Lavras, 12(4), 373-388.##Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742-754. doi: 10.1071/AR9630742.##Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453-467. doi: 10.1093/biomet/58.3.453.##Gauch, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 44(3), 705-715. doi: 10.2307/2531585.##Gauch, H. G. (1992). Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs. Elsevier, Amsterdam.##Gauch, H. G., & Moran, D. R. (2019). AMMISOFT for AMMI analysis with best practices. BioRxiv, 538454. doi: 10.1101/538454.##Gauch, H. G., Piepho, H. P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48(3), 866-889. doi: 10.2135/cropsci2007.09.0513.##Gauch, H. G., & Zobel, R. W. (1988). Predictive and postdictive success of statistical analysis of yield trials. Theoretical & Applied Genetics, 76, 1-10. doi: 10.1007/BF00288824.##GENSTAT. (2008). GENSTAT, 12th Edition. VSN International Ltd. Hemel Hempstead, UK. Available online: http://www.vsni.co.uk.##Gerema, G., Mengistu, G., Bayisa, T., & Balcha, U. (2024). Application of univariate, multivariate, and mixed models to the stability analysis of Ethiopian tetraploid wheat cultivars under irrigation condition. Agronomy for Sustainable Development, 44(1), 20574. doi: 10.1002/agg2.20574.##Gonçalves, V. M. L., Crevelari, J. A., Catarina, R. S., de Souza, Y. P., & Pereira, M. G. (2025). Adaptability and stability analysis via GGE biplot in single, double, and interpopulation maize hybrids. Scientific Reports, 15, 5065. doi: 10.1038/s41598-025-89416-z.##Gower, J. C. (1967). Multivariate analysis and multidimensional geometry. Statistician, 17(1), 13-28. doi: 10.2307/2987199.##Hanson, W. D. (1970). Genotypic stability. Theoretical & Applied Genetics, 40(5), 226-231. doi: 10.1007/BF00285245.##Hatami Maleki, H., Darvishzadeh, R., & Zeinalzadeh-Tabrizi, H., (2024a). Identification of resistance sources against Orobanche cernua in tobacco germplasm. Journal of Crop Health, 76(3), 701-711. doi: 10.1007/s10343-024-00987-9.##Hatami Maleki, H., Vaezi, B., Jozeyan, A., Mirzaei, A., Darvishzadeh, R., Dashti, S., Arshad, M., Zeinalzadeh-Tabrizi, H., & Kordrostami, M. (2025). Grass pea dual purpose dry matter and seed yields in rainfed conditions across diverse environments. Scientific Reports, 15, 4960. doi: 10.1038/s41598-025-89050-9.##Hatami Maleki, H., Vaezi, B., Jozeyan, A., Mirzaei, A., Darvishzadeh, R., Dashti, S., Abdi, H., & Zeinalzadeh-Tabrizi, H. (2024b). Deciphering genotype-by-environment interaction of grass pea genotypes under rainfed conditions and emphasizing the role of monthly rainfall. BMC Plant Biology, 24(1), 559. doi: 10.1186/s12870-024-05256-5.##Hayward, A. D., Bosemark, N., & Romagosa, I. (1993). Plant Breeding. Chapman & Hall, UK.##Hilmarsson, H. S., Rio, S., & Sanchez, J. I. (2021). Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, factorial regression model and linear mixed model. Agronomy, 11(3), 499. doi: 10.3390/agronomy11030499.##Hussein, M. A., Bjornstad, A. S., & Aastveit, A. H. (2000). SASG × ESTAB: A SAS program for computing genotype × environment stability statistics. Agronomy Journal, 92(3), 454-459. doi: 10.2134/agronj2000.923454x.##Ingvordsen, C. H., Backes, G., Lyngkjaer, M. F., Peltonen-Sainio, P., Jahoor, A., Mikkelsen, T. N., & Jørgensen, R. B. (2015). Genome-wide association study of production and stability traits in barley cultivated under future climate scenarios. Molecular Breeding, 35, 84. doi: 10.1007/s11032-015-0287-5.##IRRISTAT for Windows. (2021). Biometrics Unit. International Rice Research Institute. Available online: https://international-rice-research-institute.software.informer.com.##Jobson, J. D. (1992). Applied Multivariate Data Analysis: Volume II. Springer-Verlag, New York, INC. 731 p.##Johnson, R. A., & Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. Third Edition. Prentice Hall.##Jokarfard, V., Rabiei, B., Laki, E. S., & Börner, A. (2024). Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran. Frontiers in Plant Science, 15, 1487106. doi: 10.3389/fpls.2024.1487106.##Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis. In: Principal Component Analysis. Springer, New York. pp: 115-128. doi: 10.1007/978-1-4757-1904-8_7.##Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200. doi: 10.1007/BF02289233.##Kang, M. S. (2020). Genotype-environment interaction and stability analyses: An update. In: Kang, M. S. (Ed.). Quantitative Genetics, Genomics, and Plant Breeding. Second Edition. CABI. pp: 140-161. doi: 10.1079/9781789240214.0140.##Karimizadeh, R., Dehghani, H., & Dehghanpour, Z. (2006). Using cluster analysis for stability of maize hybrids. Journal of Crop Production & Processing, 10(3), 337-348. doi: 20.1001.1.24763594.1385.10.3.27.6.##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., & Armion, M. (2020). Evaluation of genotype × environment interaction and determining grain yield stability of durum wheat genotypes in uniform regional yield trials in semi-warm rainfed areas. Plant Genetic Research, 7(2), 25-40. doi: 10.52547/pgr.7.2.3.##Karimizadeh, R., Hoseinpour, T., Alt Jafarby, J., Shahbazi Homonloo, K., Armion, M., & Sharifi, P. (2021). Grain yield stability analysis of durum wheat genotypes using GGE biplot model in rainfed conditions. Iranian Dryland Agronomy Journal, 9(2), 217-235. doi: 10.22092/idaj.2020.343312.310.##Kebede, G., Worku, W., Jifar, H., & Feyissa, F. (2023). GGE biplot analysis of genotype by environment interaction and grain yield stability of oat (Avena sativa L.) in Ethiopia. Agrosystems, Geosciences & Environment, 6, e20410. doi: 10.1002/agg2.20410.##Khan, M. M. H., Rafii, M. Y., Ramlee, S. I., Jusoh, M., & Al Mamun, M. (2021). AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs). Scientific Reports, 11, 22791. doi: 10.1038/s41598-021-01411-2.##Lima, G. W., Silva, C. M., Mezzomo, H. C., Casagrande, C. R., Olivoto, T., Borem, A., & Nardino, M. (2022). Genetic diversity in tropical wheat germplasm and selection via multitrait index. Agronomy Journal, 114(2), 887-899. doi: 10.1002/agj2.20991.##Lin, C. S., & Butler, G. (1990). Cluster analysis for analyzing two-way classification data. Agronomy Journal, 82(2), 344-348. doi: 10.2134/agronj1990.00021962008200020034x.##Lin, C. S., & Thompson, B. (1975). An empirical method of grouping genotypes based on a linear function of the genotype-environment interaction. Heredity, 34, 255-263. doi: 10.1038/hdy.1975.28.##Ma, C., Liu, C., & Ye, Z. (2024). Influence of genotype × environment interaction on yield stability of maize hybrids with AMMI model and GGE biplot. Agronomy, 14(5), 1000. doi: 10.3390/agronomy14051000.##Maniruzzaman, M.Z., Islam, F., Begum, M.A.A., Khan, M., Amiruzzaman, M., Hossain, A. 2019. Evaluation of yield stability of seven barley (Hordeum vulgare L.) genotypes in multiple environments using GGE biplot and AMMI model. Open Agriculture, 4, pp. 284–293. https://doi.org/10.1515/opag-2019-0027.##Merrick, L. F., Burke, A. B., Zhang, Z., & Carter, A. H. (2022). Comparison of single-trait and multi-trait genome-wide association models and inclusion of correlated traits in the dissection of the genetic architecture of a complex trait in a breeding program. Frontiers in Plant Science, 12, 772907. doi:  10.3389/fpls.2021.772907.##Meyer, K. (2009). Factor-analytic models for genotype × environment type problems and structured covariance matrices. Genetics Selection Evolution, 41(1), 21. doi: 10.1186/1297-9686-41-21.##Mungomery, V. E., Shorter, R., & Byth, D. E. (1974). Genotype × environment interactions and environmental adaptation. I. Pattern analysis - Application to soya bean populations. Australian Journal of Agricultural Research, 25, 59-72.##Najafi Mirak, T., Dastfal, M., Siahfar, M., Farzadi, H., Sasani, S., & Zali, H. (2024). Stability analysis of durum wheat yield using SHMM and GGE biplot models. Plant Production, 47(2), 161-478. [In Persian]. doi: 10.22055/ppd.2024.46214.2144.##Nataraj, V., Bhartiya, A., Singh, C. P., Devi, H. N., Deshmukh, M. P., Verghese, P., & Gupta, S. (2021). WAASB‐based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agronomy Journal, 113(4), 3089-3099. doi: 10.1002/agj2.20753.##Nikzadeh Talebi, B., & Rabiei, B. (2025). Assessing grain yield stability of rice promising lines using GGE-biplot analysis. Iranian Journal of Field Crop Science, 56(1), 37-50. [In Persian]. doi: 10.22059/ijfcs.2024.375029.655075.##Oliveira, I. C. M., Guilhen, J. H. S., Ribeiro, P. C. O., Gezan, S. A., Schaffert, R. E., Simeone, M. L. F., & Parrella, R. A. C. (2020). Genotype-by-environment interaction and yield stability analysis of biomass sorghum hybrids using factor analytic models and environmental covariates. Field Crops Research, 257, 107929. doi: 10.1016/j.fcr.2020.107929.##Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology & Evolution, 11(6), 783-789. doi: 10.1111/2041-210X.13384.##Olivoto, T., & Nardino, M. (2021). MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics, 37(10), 1383-1389. doi: 10.1093/bioinformatics/btaa981.##Olivoto, T., Lúcio, A. D. C., da Silva, J. A. G., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019a). Mean performance and stability in multi‐environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960. doi: 10.2134/agronj2019.03.0220.##Olivoto, T., L'ucio, A. D. C., da Silva J. A., Sari, B. G., & Diel, M. I. (2019b). Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal, 111(6), 2961-2969. doi: 10.2134/agronj2019.03.0221.##Pacheco, Á., Vargas, M., Alvarado, G., Rodríguez, F., Crossa, J., & Burgueño, J. (2015). GEA-R: Genotype × environment analysis with R for windows. version 4.1.##Padmaja, P. G., Kalaisekar, A., Tonapi, V. A., & Madhusudhana, R. (2022). A multi-season analysis of barnyard millet (Echinochloa frumentacea) germplasm lines for shoot fly resistance and multi-trait stability. Plant Breeding, 141, 399-407. doi: 10.1111/pbr.13011.##Piepho, H. P. (1999). Stability analysis using the SAS system. Agronomy Journal, 91(1), 154-160. doi: 10.2134/agronj1999.00021962009100010024x.##Pour-Aboughadareh, A., Barati, A., Koohkan, S. A., Jabari, M., Marzoghian, A., Gholipoor, A., Shabazi Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre, 46(1), 19. doi: 10.1186/s42269-022-00703-5.##Pour-Aboughadareh, A., Sanjani, S., Nikkhah-Chamanabad, H., Mehrvar, M. R., Asadi, A., & Amini, A. (2021). Identification of salt-tolerant barley genotypes using multiple-trait index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre, 45(1), 117. doi: 10.1186/s42269-021-00576-0.##Pour‐Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., & Siddique, K. H. (2019). STABILITYSOFT: A new online program to calculate parametric and non‐parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1), e01211. doi: 10.1002/aps3.1211.##Purchase, J. L. (1997). Parametric analysis to describe genotype-environment interaction and yield stability in winter wheat. Ph.D. Dissertation. University of the Free State. South Africa.##Rahmati, S., Azizi-Nezhad, R., Pour-Aboughadareh, A., Etminan, A., & Shooshtari, L. (2024). Analysis of genotype-by-environment interaction effect in barley genotypes using AMMI and GGE biplot methods. Heliyon, 10(18), e38131. doi: 10.1016/j.heliyon.2024.e38131.##Ram, K., Munjal, R., Kesh, H., & Nyol, S. (2020). AMMI and GGE biplot analysis for yield stability of wheat genotypes under drought and high temperature stress. International Journal of Current Microbiology & Applied Sciences, 9(5), 377-389. doi: 10.20546/ijcmas.2020.905.043.##Ramzi, E., Asghari, A., Sofalian, O., Mehraban, A., & Ebadi, A. (2020). Evaluation of seed yield stability of barley promising genotypes using principal coordinates analysis. Journal of Plant Physiology & Breeding, 10(2), 59-68. doi: 10.22034/jppb.2020.13195.##Rezaeinia, M., Bihamta, M. R., Peighambari, S. A., Abbsi, A. R., & Ataei, R. (2022). Evaluation of the diversity of agro-morphological traits of barley under optimal and limited irrigation conditions and grouping its foreign germplasm using multivariate statistical methods. Iranian Journal of Field Crop Science, 53(3), 121-133. doi: 10.22059/IJFCS.2021.320026.654809.##Rocha, J. R. A. S. C. R., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: Proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10, 52-60. doi: 10.1111/gcbb.12443.##Rodrigues, P. C. (2018). An overview of statistical methods to detect and understand genotype-by-environment interaction and QTL-by-environment interaction. Biometrical Letters, 55(2), 123-138. doi: 10.2478/bile-2018-0009.##Roostaei, M., Jafarzadeh, J., Roohi, E., Nazary, H., Rajabi, R., Haghparast, R., & Mirfatah, S. M. M. (2021). Grouping patterns of rainfed winter wheat test locations and the role of climatic variables. Euphytica, 217(9), 183. doi: 10.1007/s10681-021-02879-1.##Roy, D. (2012). Biometrical Genetics: Analysis of Quantitative Variation. Alpha Science International Ltd. Oxford, UK. 410 p.##Sabaghnia, N. (2012). Multivariate statistical analysis of genotype × environment interaction in multi-environment trials of breeding programs. Agriculture & Forestry, 56(1-4), 19-38.##Santos, F., & Marza, F. (2020). Selection of forage oat genotypes through GGE Biplot and BLUP. BioRxiv, 03(10), 986422. doi: 10.1101/2020.03.10.986422.##Sehgal, D., Rosysrs, U., Mondal, S., Singh, R., Poland, J., & Dreisigacker, S. (2020). Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Frontiers in Plant Science, 11, 197. doi: 10.3389/fpls.2020.00197.##Senguttuvel, P., Sravanraju, N., Jaldhani, V., Divya, B., Beulah, P., Nagaraju, P., Manasa, Y., Prasad, A. S. H., Brajendra, P., Gireesh, C., Anantha, M. S., Suneetha, K., Sundaram, R. M., Sheshu Madhav, M., Tuti, M. D., Subbarao, L. V., Neeraja, C. N., Bhadana, V. P., Rao, P. R., Voleti, S. R., & Subrahmanyam, D. (2021). Evaluation of genotype by environment interaction and adaptability in lowland irrigated rice hybrids for grain yield under high temperature. Scientific Reports, 11(1), 15825. doi: 10.1038/s41598-021-95264-4.##Seyedsadr, M., & Cornelius, P. L. (1992). Shifted multiplicative model for nonadditive two-way tables. Communications in Statistics - Simulation & Computation, 21(3), 807-822. doi: 10.1080/03610919208813051.##Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi, A. (2020). Stability of some rice genotypes based on WAASB and MTSI indices. Iranian Journal of Genetics & Plant Breeding, 9(2), 1-11. doi: 10.30479/IJGPB.2021.14432.1283.##Shiri, M., Moharramnejad, S., Estakhr, A., Fareghi, Sh., Najafinezhad, H., Khavari Khorasani, S., Afarinesh, A., Anvari, K., & Eshraghi-Nejad, M. (2024). Determining the stability of new maize hybrids with WAASBY and MTSI indices. Journal of Crop Breeding, 16(2), 14-28. [In Persian]. doi: 10.61186/jcb.16.2.14.##Shirzad, A., Asghari, A., Zali, H., Sofalian, O., & Mohammaddoust Chamanabad, H. (2022). Application of the multi-trait genotype-ideotype distance index in the selection of top barley genotypes in the warm and dry region of Darab. Journal of Crop Breeding, 14, 65-76. [In Persian]. doi: 10.52547/jcb.14.44.65.##Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., Kumar, M., Singla, S., Shikha, K., & Madankar, K. (2021). Genotype × environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field Crops Research, 270, 108224. doi: 10.1016/j.fcr.2021.108224.##Singh, C., Gupta, A., Gupta, V., Kumar, P., Sendhil, R., Tyagi, B. S., Singh, G., Chateath, R., & Singh, G. P. (2019). Genotype x environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models. Crop Breeding & Applied Biotechnology, 19(3), 309-318. doi: 10.1590/1984-70332019v19n3a43.##Sperling, L., Ashby, J., Weltzien, E., Smith, M., & McGuire, S. (2001). Base-broadening for client-oriented impact: Insights drawn from participatory plant breeding field experience. In: Cooper, H. D., Spillane, C., & Hodgkins, T. (Eds.). Broadening the Genetic Bases of Crop Production. CAB International. pp: 419-435.##Sruthi, S. R., Laleeth, K. N., Kishore, D., Ivin, J. S., & Anbuselvam, Y. (2024). Principal component analysis in rice (Oryza sativa L.) varieties for three seasons in Annamalai Nagar, an east coast region of Tamil Nadu. Plant Science Today, 11(4), 634-639. doi: 10.14719/pst.4105.##Taghizadeh, A. A., Aminian Dehkordi, R., & Zeinanloo, A. A. (2020). Estimation of compatibility of some olive cultivars and genotypes in tarom climate conditions using non-parametric methods. Iranian Journal of Horticultural Science, 51(3), 657-668. [In Persian]. doi: 10.22059/ijhs.2019.283230.1662.##Tahmasebi, S., Dastfal, M., Zali, H., & Rajaie, M. (2018). Rough tolerance evaluation of bread wheat cultivars and promising lines in the warm and dry climate of the south. Cereal Research, 8(2), 209-225. doi: 10.22124/c.2018.10434.1398.##Tanin, M. J., Sharma, A., Saini, D. K., Singh, S., Kashyap, L., Srivastava, P., Mavi, G. S., Kaur, S., Kumar, V., Kumar, V., Grover, G., Chhuneja, P., & Sohu, V. S. (2022). Ascertaining yield and grain protein content stability in wheat genotypes having the Gpc-B1 gene using univariate, multivariate, and correlation analysis. Frontiers in Genetics, 13, 1001904. doi: 10.3389/fgene.2022.1001904.##Tekaia, (2016). Genome data exploration using correspondence analysis. Bioinformatics & Biology Insights, 10, 59-72. doi: 10.4137/BBI.S39614.##Tsai, H. Y., Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A., & Jensen, J. (2020). Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports, 10, 3347. doi: 10.1038/s41598-020-60248-7.##Verma, A., Chatrath, R., & Sharma, I. (2015). AMMI and GGE biplots for G×E analysis of wheat genotypes under rainfed conditions in central zone of India. Journal of Applied & Natural Science, 7(2), 656-661. doi: 10.31018/jans.v7i2.662.##Westcott, B. (1986). Some methods of analyzing genotype-environment interaction. Heredity, 56, 243-253. doi: 10.1038/hdy.1986.37.##Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J. E., Graef, G. L., Beavis, W. D., Diers, B. W., Song, Q., Cregan, P. B., Nelson, R., Mian, R., Shannon, J. G., McHale, L., Wang, D., Schapaugh, W., Lorenz, A. J., Xu, S., Muir, W. M., & Rainey, K. M. (2018). Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. G3 Genes, Genomes, Genetics, 8(2), 519-529. doi: 10.1534/g3.117.300300.##Yan, W. (2001). GGEbiplot—A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93(5), 1111-1118. doi: 10.2134/agronj2001.9351111x.##Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega‐environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605. doi: 10.2135/cropsci2000.403597x.##Yan, W., & Kang, M. S. (2003). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. First Edition. CRC Press. 288 p. doi: 10.1201/9781420040371.##Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623-645. doi: 10.4141/P05-169.##Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., Chen, S., Peng, H., Nardino, M., & Jiang, X. (2022). Multi-trait selection for mean performance and stability of maize hybrids in megaenvironments delineated using envirotyping techniques. Frontiers in Plant Science, 13, 1030521. doi: 10.3389/fpls.2022.1030521.##Zali, H., Barati, A., & Pour-Aboughadareh, A. R. (2022). Screening of barley elite genotypes using different selection indices based on multi-traits. Crop Production, 15(4), 159-182. [In Persian]. doi: 10.22069/ejcp.2023.20071.##Zali, H., Sofalian, O., Hasanloo, T., Asgharii, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum An International Journal, 7(2), 703-711.##Zhang, P. P., Song, H., Ke, X. W., Jin, X. J., Yin, L. H., Liu, Y., Qu, Y., Su, W., Feng, N. J., Zheng, D. F., & Feng, B. L. (2016). GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes. Journal of Integrative Agriculture, 15(6), 1218-1227. doi: 10.1016/S2095-3119(15)61157-1.##Zobel, R. W., Wright, M. J., & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. doi: 10.2134/agronj1988.00021962008000030002x.##