Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in
Beta vulgaris.
Plant Physiology,
24(1), 1-15. doi:
10.1104/pp.24.1.1.##Aslam, M. M., Karanja, J., & Bello, S. K. (2019).
Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance.
Physiological & Molecular Plant Pathology,
106, 232-237. doi:
10.1016/j.pmpp.2019.02.010.##Aslani, Z., Hassani, A., Mandoulakani, B. A., Barin, M., & Maleki, R. (2023). Effect of drought stress and inoculation treatments on nutrient uptake, essential oil and expression of genes related to monoterpenes in sage (
Salvia officinalis).
Scientia Horticulturae,
309, 111610. doi:
10.1016/j.scienta.2022.111610.##Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves.
Australian Journal of Biological Sciences,
15(3), 413-428. doi:
10.1071/BI9620413.##Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies.
Plant & Soil,
39, 205-207. doi:
10.1007/BF00018060.##Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P., & Vijver, M. G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant
Lepidium sativum.
Chemosphere, 226, 774-781. doi:
10.1016/j.chemosphere.2019.03.163.##Cao, L., Wu, D., Liu, P., Hu, W., Xu, L., Sun, Y., Wu, Q., Tian, K., Huang, B., Yoon, S. J., Kwon, B. O., & Khim, J. S. (2021). Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China.
Science of the Total Environment, 794, 148694. doi:
10.1016/j.scitotenv.2021.148694.##Dabral, S., Varma, A., Choudhary, D. K., Bahuguna, R. N., & Nath, M. (2019). Biopriming with
Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells.
Ecotoxicology & Environmental Safety,
186, 109741. doi:
10.1016/j.ecoenv.2019.109741.##de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance.
Environmental Science & Technology,
53(10), 6044-6052. doi:
10.1021/acs.est.9b01339.##Dong, Y., Gao, M., Song, Z., & Qiu, W. (2020). Microplastic particles increase arsenic toxicity to rice seedlings.
Environmental Pollution,
259, 113892. doi:
10.1016/j.envpol.2019.113892.##Fu, Q., Lai, J. L., Ji, X. H., Luo, Z. X., Wu, G., & Luo, X. G. (2022). Alterations of the rhizosphere soil microbial community composition and metabolite profiles of
Zea mays by polyethylene-particles of different molecular weights.
Journal of Hazardous Materials,
423, 127062. doi:
10.1016/j.jhazmat.2021.127062.##Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (
Lactuca sativa L. var.
ramosa Hort).
Chemosphere,
237, 124482. doi:
10.1016/j.chemosphere.2019.124482.##Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Ansari, A. A., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. (2016).
Piriformospora indica: Potential and significance in plant stress tolerance.
Frontiers in Microbiology,
7, 332. doi:
10.3389/fmicb.2016.00332.##Gong, W., Zhang, W., Jiang, M., Li, S., Liang, G., Bu, Q., Xu, L., Zhy, H., & Lu, A. (2021). Species-dependent response of food crops to polystyrene nanoplastics and microplastics.
Science of the Total Environment,
796, 148750. doi:
10.1016/j.scitotenv.2021.148750.##He, D., Zhang, Y., & Gao, W. (2021). Micro (nano) plastic contaminations from soils to plants: Human food risks.
Current Opinion in Food Science,
41, 116-121. doi:
10.1016/j.cofs.2021.04.001.##Harman, G. E. (2011). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity.
New Phytologist,
189(3), 647-649. doi:
10.1111/j.1469-8137.2010.03614.x.##Hartmann, G. F., Ricachenevsky, F. K., Silveira, N. M., & Pita-Barbosa, A. (2022). Phytotoxic effects of plastic pollution in crops: what is the size of the problem?.
Environmental Pollution,
292, 118420. doi:
10.1016/j.envpol.2021.118420.##Huang, Z., Zou, Z. R., Huang, H. H., He, C. X., Zhang, Z. B., Wang, H. S., & Li, J. M. (2010). Cloning, analysis and expression of a drought-related gene
MeP5CS from melon.
Acta Horticulturae Sinica,
37(8), 1279-1286.##Hussin, S., Khalifa, W., Geissler, N., & Koyro, H. W. (2017). Influence of the root endophyte
Piriformospora indica on the plant water relations, gas exchange and growth of
Chenopodium quinoa at limited water availability.
Journal of Agronomy & Crop Science,
203(5), 373-384. doi:
10.1111/jac.12199.##Jangir, P., Shekhawat, P. K., Bishnoi, A., Ram, H., & Soni, P. (2021). Role of
Serendipita indica in enhancing drought tolerance in crops.
Physiological & Molecular Plant Pathology,
116, 101691. doi:
10.1016/j.pmpp.2021.101691.##Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., Tanveer, M., & Huang, L. (2023). Microplastic stress in plants: Effects on plant growth and their remediations.
Frontiers in Plant Science,
14, 1226484. doi:
10.3389/fpls.2023.1226484.##Jyothymol, C. P., Kutty, M. S., Pradeepkumar, T., Parvathi, M. S., & Rashmi, C. R. (2024).
Piriformospora indica improves water stress tolerance in watermelon (
Citrullus lanatus (Thunb.) Matsum & Nakai).
Plant Physiology Reports,
29(3), 638-650. doi:
10.1007/s40502-024-00797-1.##Khalid, M., Ur-Rahman, S., Tan, H., Su, L., Zhou, P., & Hui, N. (2022). Mutualistic fungus
Piriformospora indica modulates cadmium phytoremediation properties of host plant via concerted action of enzymatic and non-enzymatic biochemicals.
Pedosphere,
32(2), 256-267. doi:
10.1016/S1002-0160(21)60014-0.##Lian, J., Liu, W., Meng, L., Wu, J., Zeb, A., Cheng, L., Lian, Y., & Sun, H. (2021). Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties.
Journal of Cleaner Production,
318, 128571. doi:
10.1016/j.jclepro.2021.128571.##Ma, J., Aqeel, M., Khalid, N., Nazir, A., Alzuaibr, F. M., Al-Mushhin, A. A., Hakami, O., Iqbal, M. F., Chen, F., Alamri, S., Hashem, M., & Noman, A. (2022). Effects of microplastics on growth and metabolism of rice (
Oryza sativa L.).
Chemosphere,
307, 135749. doi:
10.1016/j.chemosphere.2022.135749.##Mohd, S., Shukla, J., Kushwaha, A. S., Mandrah, K., Shankar, J., Arjaria, N., Saxena, P. N., Narayan, R., Roy, S. K., & Kumar, M. (2017). Endophytic fungi
Piriformospora indica mediated protection of host from arsenic toxicity.
Frontiers in Microbiology,
8, 754. doi:
10.3389/fmicb.2017.00754.##Pehlivan, N., & Gedik, K. (2021). Particle size-dependent biomolecular footprints of interactive microplastics in maize.
Environmental Pollution,
277, 116772. doi:
10.1016/j.envpol.2021.116772.##Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.
Transactions of the British Mycological Society,
55(1), 158-161. doi:
10.1016/S0007-1536(70)80110-3.##Pignattelli, S., Broccoli, A., & Renzi, M. (2020). Physiological responses of garden cress (
L. sativum) to different types of microplastics.
Science of the Total Environment,
727, 138609. doi:
10.1016/j.scitotenv.2020.138609.##Rai, M., Acharya, D., Singh, A., & Varma, A. (2001). Positive growth responses of the medicinal plants
Spilanthes calva and
Withania somnifera to inoculation by
Piriformospora indica in a field trial.
Mycorrhiza,
11, 123-128. doi:
10.1007/s005720100115.##Swetha, S., & Padmavathi, T. (2020). Mitigation of drought stress by
Piriformospora indica in
Solanum melongena L. cultivars.
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,
90(3), 585-593. doi:
https://doi.org/10.1007/s40011-019-01128-3.##Tyagi, J., Mishra, A., Kumari, S., Singh, S., Agarwal, H., Pudake, R. N., Varma, A., & Joshi, N. C. (2023). Deploying a microbial consortium of
Serendipita indica,
Rhizophagus intraradices, and
Azotobacter chroococcum to boost drought tolerance in maize.
Environmental & Experimental Botany,
206, 105142. doi:
10.1016/j.envexpbot.2022.105142.##Tyagi, J., Varma, A., & Pudake, R. N. (2017). Evaluation of comparative effects of arbuscular mycorrhiza (
Rhizophagus intraradices) and endophyte (
Piriformospora indica) association with finger millet (
Eleusine coracana) under drought stress.
European Journal of Soil Biology,
81, 1-10. doi:
10.1016/j.ejsobi.2017.05.007.##Xu, J., Guo, L., & Liu, L. (2022). Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism.
Environmental & Experimental Botany,
201, 104974. doi:
10.1016/j.envexpbot.2022.104974.##Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation.
Microbiological Research,
242, 126626. doi:
10.1016/j.micres.2020.126626.##