The effect of SiO2 nanoparticles on quantitative and qualitative yield and yield components of winter wheat (Triticum aestivum L.) varieties under late season water deficit stress conditions

Document Type : Research Paper

Authors

1 Associate Professor, Department of Plant Production and Genetics, Bu-Ali Sina University, Hamedan, Iran

2 Research Assistant Professor, Department of Crop and Horticultural Sciences Research, Hamedan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Hamedan, Iran

Abstract

Introduction
Increasing temperatures and water deficit at the end of spring and early summer are very important challenges at the late-season growing period of winter wheat varieties in temperate and cold regions. Considering the economic importance of wheat, it seems necessary to use appropriate strategies to optimize the wheat production system under terminal drought stress. In this regard, cultivating high-yielding and terminal drought-resistant varieties in combination with growth regulators can be effective. The objective of the present study was to investigate the effect of nanosilicon (SiO2-NP) on yield and yield components of three winter wheat varieties under late-season water deficit stress conditions.

Materials and methods
The experiment was conducted with three winter wheat varieties based on split-plot in a randomized complete block design with three replications at the research field of Bu-Ali Sina University, Hamedan, Iran, in 2021-2022. The main factor was in four levels, including no-water stress with nanosilicon application, no-water stress and no-nanosilicon application, water deficit stress with nanosilicon application, and water deficit stress and no-nanosilicon application, and the subfactor was three winter wheat varieties, including Alvand, Pishgam and Pishtaz. Water deficit stress was applied at the end of the growing season by stopping irrigation at the end of flowering stage (code 69 in BBCH scale). Nanosilicon foliar application at a concentration of 30 mg/L was performed in two stages, before flowering and spike emergence (code 51 in BBCH scale) and flowering initiation (code 61 in BBCH scale). The measured traits in this study included the number of spikes per unit area, number of spikelets per spike, number of grains per spike, 1000-grain weight, grain yield, biological yield, harvest index, leaf greenness index (SPAD), and grain protein content. Statistical analyses was performed using SAS software and graphs were drawn using Excel software.

Research findings
The results of the analysis of variance showed that the effect of water deficit stress and nanosilicon was significant on all measured traits, except for the number of spikes per unit area. The differences between the studied wheat varieties were also significant in terms of the number of spikes per unit area, grain yield, biological yield and harvest index, but was insignificant in term of other measured traits. However, the interaction of stress and nanosilicon × variety was significant only on two traits, 1000-grain weight and grain yield. The results of comparison of means revealed that the number of spikes per unit area in Alvand variety was significantly higher than two varieties, Pishgam and Pishtaz. Also, the traits that were affected by water deficit stress and nanosilicon, showed a decrease during water stress without nanosilicon application. The results showed that in both non-stress and water deficit stress conditions, the application of nanosilicon increased grain yield and yield components in all three wheat varieties compared to its non-application. However, the effect of nanosilicon was greater in water deficit stress, so that the grain yield of three varieties Alvand, Pishgam and Pishtaz increased by 18.03, 8.05 and 9.22 percent, respectively, with the application of nanosilicon compared to the non-application of nanosilicon under water deficit conditions. The highest grain yield (6275.7 kg.ha-1) was obtained with the application of nanosilicon in Alvand variety under non-water stress conditions, and the lowest grain yield (5185 kg.ha-1) was observed in Pishtaz variety under water deficit stress conditions without the application of nanosilicon.

Conclusion
Water deficit stress at the end of flowering stage and the beginning of grain filling period reduced grain yield of the studied three wheat cultivars, but the yield reduction was greater in Alvand variety than in the two other varieties. The reason for this reduction was mainly related to the reduction in the number of grains per spike and 1000-grain weight under water deficit stress conditions. Nanosilicon foliar application largely compensated for the yield reduction caused by late season water deficit stress in all three studied varieties, especially in Alvand variety.

Keywords

Main Subjects


Abdoli, M., & Saeidi, M. (2015). Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. Journal of Agricultural Science & Technology, 17(4), 885-898. dor: 20.1001.1.16807073.2015.17.4.14.1.##Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8, 1-15.  doi: 10.1038/s41598-018-21441-7.##Adatia, M. H., & Beasford, R. T. (1986). The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany, 58(3), 343-351. doi: 10.1093/oxfordjournals.aob.a087212.##Ahmad, F., Lah, M., Aziz, T., Maqsood, M. A., Tahir, M., & Kanwal, S. (2007). Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emirates Journal of Food & Agriculture, 19, 1-7. doi: 10.9755/ejfa. v12i1.5170.##Alavifazel, M. (2016). Assessment of remobilization rate to grain durum and bread wheat genotypes in response to nitrogen amounts. Crop Physiology Journal, 7(28), 5-18. [In Persian]. dor: 20.1001.1.2008403.1394.7.28.1.2.##Alizadeh, A., & Kamali, G. H. (2008). Crop Water Requirement in Iran. Astan Ghods Razavi Publication. Mashhad, Iran. 228 p. [In Persian].##Ashfaq, W., Brodie, G., Fuentes, S., Pang, A., & Gupta, D. (2024). Silicon improves root system and canopy physiology in wheat under drought stress. Plant & Soil, 502, 279-296. doi: 10.1007/s11104-023-06202-4.##Behdad, M., Paknejad, F., Mahdavi Damghani, A., Vazan, S., & Moarrefi, M. (2022). Effects of drought stress on agronomical traits of wheat (Triticum aestivum L.): A meta-analysis. Environmental Stresses in Crop Sciences, 15(1), 53-65. [In Persian]. doi: 10.22077/escs.2020.3377.1851.##Bihamta, M., Shirkavand, M., Hasanpour, J., & Afzalifar, A. (2018). Evaluation of durum wheat genotypes under normal irrigation and drought stress conditions. Journal of Crop Breeding, 9(24), 119-136. [In Persian]. doi: 10.29252/jcb.9.24.119.##Bukhari, M. A., Ahmad, Z., Ashraf, M. Y., Afzal, M., Nawaz, F., Nafees, M., Jatoi, W. M., Malghani, N. A., Shah, A. N., & Manan, A. (2021). Silicon mitigates drought stress in wheat (Triticum aestivum L.) Through Improving Photosynthetic Pigments, Biochemical and Yield Characters. Silicon13, 4757-4772. doi: 10.1007/s12633-020-00797-4.##Bulman, P., & Hunt, L. A. (1988). Relationships among tillering, spike number and grain yield in winter wheat (Triticum aestivum L.) in Ontario. Canadian Journal of Plant Science, 168, 583-596. doi: 10.4141/cjps88-07.##Dai, J., Bean, B., Brown, B., Bruening, W., Edwards, J., Flowers, M., Karow, R., Lee, C., Morgan, G., Ottman, M., Ransom, J., & Wiersma, J. (2016) Harvest index and straw yield of five classes of wheat. Biomass & Bioenergy, 85, 223-227. doi: 10.1016/j.biombioe.2015.12.023.##Daniel, C., & Triboi, E. (2008). Changes in wheat protein aggregation during grain development: Effects of temperature and water stress. Journal of Agronomy, 16, 1-12. doi: 10.1016/S1161-0301(01)00114-9.##Devanna, B. N., Mandlik, R., Raturi, G., Sudhakaran, S. S., Sharma, Y., Sharma, S., Rana, N., Bansal, R., Barvkar, V., Tripathi, D. K., Shivaraj, S. M., & Deshmukh, R. (2021) Versatile role of silicon in cereals: Health benefits, uptake mechanism, and evolution, Plant Physiology & Biochemistry, 165, 173-186. doi: 10.1016/j.plaphy.2021.03.060.##Emam, Y., Ranjbar A. M., & Bahrani, M. J. (2007). Evaluation of yield and yield components in wheat genotypes under post-anthesis drought stress. Journal of Crop Production & Processing, 11(1), 317-328. dor: 20.1001.1.22518517.1386.11.1.24.1.##Epstein, E., & Bloom, A. (2004). Mineral Nutrition of Plants: Principles and Perspectives. Second Edition. Sinauer Associates, Oxford University Press. 380 p.##Etesami, E., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology & Environmental Safety, 147, 881-896. doi: 10.1016/j.ecoenv.2017.09.063.##Fallah, A., Visperas, R. M., & Alejar, A. A. (2004). The interactive effect of silicon and spikelet filling in rice (Oryza sativa L.). Journal Article, 3044, 174-176.##Frantová, N., Rábek, M., Elzner, P., Stˇreda, T., Jovanovic, I., Holková, L., Martinek, P., Smutná, P., & Prášil, I. T. (2022). Different drought tolerance strategy of wheat varieties in spike architecture. Agronomy, 12, 2328. doi: 10.3390/agronomy12102328.##Gong, H., Chen, K., Chen, G., Wang, S., & Zhang, C. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26(5), 1055-1063. doi: 10.1081/PLN-120020075.##Gong, H. J., Chen, K. M., & Zhao, Z. G. (2008). Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biologia Plantarum, 52, 592-596. doi: 10.1007/s10535-008-0118-0.##Habibi, D. (2011). Effect of plant growth promoting rhizobacteria, foliar application of amino acids and silicic acid on yield and yield components of wheat under drought stress conditions. Journal of Crop Production Research, 3(1) 71-87. [In Persian].##Hasanuzzaman, M., Nahar, K., Anee, T. I., Khan, M. I. R., & Fujita, M. (2018). Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South African Journal of Botany, 115, 50-57. doi: 10.1016/j.sajb.2017.12.006.##Hosseinalipour, B., Rahnama, A., & Farrokhian Firouzi, A. (2020). Effect of drought stress on wheat root growth and architecture at vegetative growth stage. Iranian Journal of Field Crop Science, 51(1), 63-75. doi: 10.22059/ijfcs.2019.266586.654531.##Irfan, M., Maqsood, M. A., Rehman, H. U., Mahboob, W., Sarwar, N., Hafeez, O. B. A., Hussain, S., Ercisli, S., Akhtar, M., & Aziz, T. (2023). Silicon nutrition in plants under water-deficit conditions: Overview and prospects. Water15(4), 739. doi: 10.3390/w15040739.##Islam, M. A., De, R. K., Hossain, M. A., Haque, M. S., Uddin, M. N., Fakir, M. S. A., Kader, M. A., Dessoky, E. S., Attia, A. O., El-Hallous, E. I., & Hossain, A. (2021). Evaluation of the tolerance ability of wheat genotypes to drought stress: Dissection through culm-reserves contribution and grain filling physiology. Agronomy, 11(6), 1252. doi: 10.3390/agronomy11061252.##Kafi, M., Zand, E., Kamkar, B., Sharifi, H. R., & Goldani, M. (2000). Plant Physiology. Jihad-e-Daneshgahi of Mashhad Publication. 379 p. [In Persian].##Karmollachaab, A., Bakhshandeh, A., Gharineh, M. H., Moradi Telavat, M. R., & Fathi, G. (2015). Effect of silicon application on morpho-physiological characteristics, grain yield and nutrient content of bread wheat under water stress conditions. Journal of Crop Production & Processing, 4(14), 133-145. [In Persian]. doi: 20.1001.1.22518517.1393.4.14.12.2.##Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Frontiers in Plant Science8, 510. doi: 10.3389/fpls.2017.00510.##Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., & Sabagh, A. E. (2021). Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability. 13, 3725. doi: 10.3390/su13073725.##Leilah, A. A., & Al-Khateeb, S. A. (2005). Statistical analysis of wheat yield under drought conditions. Journal of Arid Environments, 61(3), 483-496. doi: 10.1016/j.jaridenv.2004.10.011.##Liang, Y. (1998). Effects of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere, 8(4), 289-296.##Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422-428. doi: 10.1016/j.envpol.2006.06.008.##Maghsoudi, K., & Emam, Y. (2016). Response of bread wheat cultivars to foliar application of silicon under post anthesis drought stress conditions. Journal of Crop Production & Processing, 6(19), 1-13. [In Persian]. doi: 10.18869/acadpub.jcpp.6.19.1.##Mehraban, A., Tobe, A., Gholipouri, A., Amiri, E., Ghafari, A., & Rostaii, M. (2019). The effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum L.). Polish Journal of Environmental Studies28(2), 739-746. doi: 10.15244/pjoes/85350.##Ming, D., Pei, Z., Naeem, M., Gong, H., & Weijun, Z. (2012). Silicon alleviates PEG-induced water-deficit stress in upland Rice seedlings by enhancing osmotic adjustment. Journal of Agronomy & Crop Science, 198(1), 14-26. doi: 10.1111/j.1439-037X.2011.00486.x.##Mostafazadeh-Fard, B., Heidarpour, M., Aghakhani, A., & Feizi, M. (2008). Effects of leaching on soil desalinization for wheat crop in an arid region. Plant, Soil & Environment, 54(1), 20-29. doi: 10.17221/2780-PSE.##Mushtaq, A., Jamil, N., Rizwan, S., Mandokhel, F., Riaz, M., Hornyak, G. L., Najam Malghani, M., & Shahwani, N. (2018). Engineered silica nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas. First International Conference on Advances in Engineering and Technology (ICAET-2018), 2-3 April 2018, Baleli, Quetta 87300, Pakistan. IOP Conference Series: Materials Science & Engineering, 414, 012029. doi: 10.1088/1757-899X/414/1/012029.##Nawaz, F., Ahmad, R., Waraich, E. A., Naeem, M. S., & Shabbir, R. N. (2012). Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. Journal of Plant Nutrition, 35(6), 961-974. doi: 10.1080/01904167.2012.663637.##Pezeshk, S., Malakouti, M. J., Tehrani, M. M., & Rezakhani, L. (2023). Investigation of the effect of silicon on wheat yield and water use efficiency under water stress conditions. Journal of Soil Research36(4), 335-347. [In Persian]. doi: 10.22092/ijsr.2023.358545.663.##Philipp, N., Weichert, H., Bohra, U., Weschke, W., Schulthess, A. W., & Weber, H. (2018). Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS One, 13(10), e0205452. doi: 10.1371/journal.pone.0205452.##Porker, K., Straight, M., & Hunt, J. R. (2020). Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Frontiers in Plant Science, 11, 994. doi: 10.3389/fpls.2020.00994.##Pour-Aboughadareh, A., Mohammadi, R., Etminan, A., Shooshtari, L., Maleki-Tabrizi, N., & Poczai, P. (2020). Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability, 12, 5610. doi: 10.3390/su12145610.##Rajput, V. D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K. K., Singh, A., van Hullebusch, E. D., Singh, R. K., Jatav, H. S., & Choudhary, R. )2021(. Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology10(8), 791. doi: 10.3390/biology10080791.##Saleem, M. (2003). Response of durum and bread wheat genotypes to drought stress: Biomass and yield components. Asian Journal of Plant Sciences, 2(3), 290-293. doi: 10.3923/ajps.2003.290.293.##Salem, E. M. M., Kenawey, M. K. M., Saudy, H. S., & Mubarak, M. (2022). Influence of silicon forms on nutrients accumulation and grain yield of wheat under water deficit conditions. Gesunde Pflanzen, 74, 539-548. doi: 10.1007/s10343-022-00629-y.##Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., & Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8, 421-426. doi: 10.1038/s41558-018-0138-5.##Shamsi, K., Petrosyan, M., Noor-Mohammadi, G., Haghparast, A., Kobraee, S., & Rasekhi, B. (2011). Differential agronomic responses of bread wheat cultivars to drought stress in the west of Iran. African Journal of Biotechnology, 10(14), 2708-2715. doi: 10.5897/AJB10.1133.##Tabassam, M., Hussain, M., Sami, A., Shabbir, I., Bhutta, A. N., Mubusher, M., & Ahmad, S. (2014). Impact of drought on the growth and yield of wheat. Scientia Agriculturae7(1), 11-18. doi: 10.15192/PSCP.SA.2014.3.1.1118.##Tavakoli, A., Hasani, A., & Afsahi, K. (2023). Studying the grain growth process of wheat varieties under drought stress conditions using mathematical models. Cereal Research, 13(2), 99-114. [In Persian]. doi: 10.22124/CR.2023.25679.1788.##Verma, K. K., Song X. P., Singh, M., Huang, H. R., Bhatt, R., Xu, L., Kumar, V., & Li, Y. R. (2022) Influence of nanosilicon on drought tolerance in plants: An overview. Frontiers in Plant Science, 13, 1014816. doi: 10.3389/fpls.2022.1014816.##Wang, M., Wang, R., Mur, L. A. J., Ruan, J., Shen, Q., & Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research8, 254. doi: 10.1038/s41438-021-00681-1.##Willick, I. R., Lahlali, R., Vijayan, P., Muir, D., Karunakaran, C., & Tanino, K. K. (2018). Wheat flag leaf epicuticular wax morphology and composition in response to moderate drought stress are revealed by SEM, FTIR-ATR and synchrotron X-ray spectroscopy. Physiologia Plantarum162, 316-332. doi: 10.1111/ppl.12637.##Xu, R., Huang, J., Guo, H., Wang, C., & Zhan, H. (2023). Functions of silicon and phytolith in higher plants. Plant Signaling & Behavior, 18(1), 2198848. doi: 10.1080/15592324.2023.2198848.##Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. In: Hasanuzzaman, M., Filho, M. C. M. T., Fujita, M., & Nogueira, T. A. R. (Eds.). Sustainable Crop Production. IntechOpen, London. doi: 10.5772/intechopen.88434.##Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae7(3), 50. doi: 10.3390/horticulturae7030050.##Yousefi, R., Bannayan Aval, M., Khorramdel, S., & Nassiri Mahallati, M. (2018). Comparison of old and new dryland wheat cultivars in response to different planting dates. Applied Field Crops Research, 31(2), 46-72. [In Persian]. doi: 10.22092/aj.2018.115913.1202.##Yousefi, R., & Esna-Ashari, M. (2017). The effect of micro- and nanoparticles of silicon on concentration of macro- and micro elements and silicon content of strawberry plant in soilless culture condition. Journal of Science & Technology of Greenhouse Culture, 8(1), 57-71. [In Persian]. doi: 10.18869/acadpub.ejgcst.8.1.57.##Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019) Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech, 9, 73. doi: 10.1007/s13205-019-1613-z.##Zaynalinezhad, K., Weber, W. E., Röder, M. S., Sharma, S., Lohwasser, U., & Meyer, R. C. (2012). QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica186, 127-138. doi: 10.1007/s10681-011-0559-y.##Zhang, K., Zhao, F., & Zhang, B. (2023). Soil water content at planting affects determining agricultural drought for rainfed spring wheat. Atmosphere, 14(4), 665. doi: 10.3390/atmos14040665.##Zhou, Y., Chen, Z. X., Cheng, M. P., Chen, J., Zhu, T. T., Wang, Y. X., Qi, P. F., Chen, G. Y., Jiang, Q. T., Wei, Y. M., Luo, M. C., Nevo, E., Allaby, R. G., Liu, J. R., Dvorak, J., & Zheng, Y. L. (2018). Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnology Journal, 16, 280-291. doi: 10.1111/pbi.12770.##