Enhancing the physiological characteristics and yield of maize (Zea mays L.) with the soil application and spraying of zinc under different moisture conditions

Document Type : Research Paper

Authors

1 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

3 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

4 Ph. D. Graduate, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

Abstract

Introduction
Water deficit is the most significant environmental stress that limits plant growth in the world. Meanwhile, zinc is recognized as a vital micronutrient that plays a crucial role in the normal growth of plants. Its application has been shown to enhance both the quantity and quality of agricultural products by increasing the photosynthesis rate, activity of antioxidant enzymes, and some osmolyte compounds such as proline. This enhancement can mitigate the adverse effects of environmental stresses, including drought. In the present study, the effects of various amounts and methods of zinc application were investigated on the activity of antioxidant enzymes as well as the growth and grain yield of maize under drought stress conditions. The aim of this experiment was to improve the physiological aspects, growth and yield of maize under various droght conditions.

Materials and methods
This research was conducted as split-plot in a randomized complete block design with three replications in research field of the Faculty of Agriculture, University of Zanjan, Zanjan, Iran, in 2020. The maize variety studied in this research was grain maize SC704, belonging to the late-maturing group with a growing period of 125 to 135 days. The main factor included drought stress at three levels (by applying irrigation at 90%, 60%, and 30% of field capacity) and sub-factor was the rates and methods of zinc application at six levels (including no zinc application, soil application of zinc sulfate at 10 and 25 kg.ha-1, and foliar application of 5 g.Lit-1 zinc at stem elongation, tassel emergence and milking stages. The characteristics evaluated in this study included grain iron, zinc, and phosphorus concentrations, the activity of antioxidant enzymes of catalase, ascorbate peroxidase, guaiacol peroxidase, and superoxide dismutase, as well as proline content, malondialdehyde content, hydrogen peroxide concentration, leaf chlorophyll index, leaf area index, grain yield, and biological yield. Data analysis including analysis of variance and comparison of means by least significant difference (LSD) test at a probability level of 5% were performed using SAS software version 9.3, and graphs were drawn using Excel software.

Research findings
The results of the analysis of variance showed that the effect of drought stress and application of zinc was significant on all evaluated traits in the SC704 variety. The interaction of zinc × drought stress was also significant on all evaluated traits, except grain yield and biological yield. The results showed that drought stress significantly reduced the grain iron, zinc, and phosphorus concentrations, the activity of antioxidant enzymes including superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, as well as leaf chlorophyll index and leaf area index in the SC704 variety. On the other hand, hydrogen peroxide, malondialdehyde, and proline contents increased by 197%, 256% and 129%, respectively, with increasing drought stress intensity. In contrast, the application of zinc with enhancing these traits, led to decrease in the production of hydrogen peroxide and malondialdehyde. Furthermore, drought stress reduced grain yield and biological yield, but zinc application especially soil application of 25 kg.ha-1, significantly improved the grain yield and biological yield of SC704 variety by 62% and 44%, respectively.

Conclusion
The findings of this study showed that drought stress, especially at high intensities, by disrupting the absorption of nutrient from the soil, soil, led to a decrease in the concentration of grain elements, leaf area index, leaf chlorophyll index, and antioxidant enzyme activities, and an increase in proline content. In contrast, the application of zinc, especially its soil application of kg.ha-1, by changing (intensifying) the mentioned traits, improved the physiological and morphological aspects and grain yield of maize, so that its application under moderate drought stress reduced hydrogen peroxide and malondialdehyde contents, and increased proline content and antioxidant enzymes activities. Also, the results of this experiment showed that foliar application of zinc was more effective in increasing the concentration of grain elements than soil application.

Keywords

Main Subjects


Abdelaziz, M. E., & Taha, S. S. (2018). Foliar potassium and zinc stimulates tomato growth, yield and enzymes activity to tolerate water stress in soilless culture. Journal of Food Agriculture & Environment, 16(2), 113-118. ##Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics & Plant Breeding46(1), 27-34. doi: 10.17221/67/2009-CJGPB.##Aebi, H. (1984). Catalase in vitro. Methods Enzymology, 105, 121-126. doi: 10.1016/s0076-6879(84)05016-3.##Ahmadi, H., Abbasi, A., Taleei, A., Mohammadi, V., & Pueyo, J. J. (2022). Antioxidant response and calcium-dependent protein kinases involvement in canola (Brassica napus L.) tolerance to drought. Agronomy, 12(1), 125. doi: 10.3390/agronomy12010125.##Ahmadi, R., Mahmoudi, M., Shekari, F., Afsahi, K., Shekari, K., Saba, J., & Mastinu, A. (2024). Application methods of zinc sulphate increased safflower seed yield and quality under end-season drought stress. Horticulturae10(9), 963. doi: 10.3390/horticulturae10090963.##Ali, M., Ahmed, I., Zia, M. H., Abbas, S., Sultan, T., & Sharif, M. (2025). Enhancing wheat yield and zinc biofortification through synergistic action of potent zinc-solubilizing bacteria and zinc sulfate in calcareous soil. Agricultural Research, 14, 159-170. doi: 10.1007/s40003-024-00750-6.##Amirani, D. C., & Kasraei, P. (2015). The effect of foliar application of microelements on phenological and physiological characteristics of mung bean under drought stress. International Journal of Agronomy & Agricultural Research, 7(3), 1-8. ##Ashraf, M. A., Riaz, M., Arif, M. S., Rasheed, R., Iqbal, M., Hussain, I., & Mubarik, M. S. (2019). The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants. In: Hasanuzzaman, M., Fujita, M., Oku, H., & Islam, M. T. (Eds.). Plant Tolerance to Environmental Stress. CRC Press.##Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement. Springer Cham. doi: 10.1007/978-3-319-25442-5.##Bandurska, H., & Stroiński, A. (2003). ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare ‘Maresi’) barley genotypes under water deficit conditions. Acta Physiologiae Plantarum, 25(1), 55-61. doi: 10.1007/s11738-003-0036-x.##Barker, D., Sullivan, C., & Moser, L. E. (1993). Water deficit effects on osmotic potential, cell wall elasticity, and proline in five forage grasses. Agronomy Journal, 85(2), 270-275. doi: 10.2134/agronj1993.00021962008500020020x.##Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant & Soil, 39(1), 205-207. doi: 10.1007/BF00018060.##Brennan, R. F. (2001). Residual value of zinc fertiliser for production of wheat. Australian Journal of Experimental Agriculture41(4), 541-547. doi: 10.1071/EA00139.##Cakmak, I. (2000). Tansley Review No. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist, 146(2), 185-205. 10.1046/j.1469-8137.2000.00630.x.##Cakmak, I., Pfeiffer, W. H., & McClafferty, B. (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry87(1), 10-20. doi: 10.1094/CCHEM-87-1-0010.##Chen, L. M., Lin, C. C., & Kao, C. H. (2000). Copper toxicity in rice seedlings: Changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Botanical Bulletin of Academia Sinica, 41(2), 99-103. doi: 10.7016/BBAS.200004.0099.##Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4(2), 215-223. doi: 10.1046/j.1365-313X.1993.04020215.x.##Ebrahimi, Z., Biabani, A., Mohammadi, R., Sabouri, H., & Rahemi Karizki, A. (2021). Effect of wheat enrichment by foliar application of zinc and iron on quantitive and qualitative traits at differnt phenological stages. Journal of Crop Breeding, 13(38), 138-148. [In Persian]. doi: 10.52547/jcb.13.38.138.##Elshamly, A. M., Iqbal, R., Ali, B., Ahmed, I., Akram, M. I., Ali, S., & Hamed, M. H. (2024). Zinc and amino acids improve the growth, physiological, and biochemical attributes of corn under different irrigation levels. Rhizosphere, 29, 100820. Doi: 10.1016/j.rhisph.2023.100820.##Faizan, M., Bhat, J. A., Chen, C., Alyemeni, M. N., Wijaya, L., Ahmad, P., & Yu, F. (2021). Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology & Biochemistry, 161, 122-130. doi: 10.1016/j.plaphy.2021.02.002.## Faizan, M., Faraz, A., Yusuf, M., Khan, S. T., & Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2), 678-686. doi: 10.1007/s11099-017-0717-0.##Helaly, M. N., El-Metwally, M. A., El-Hoseiny, H., Omar, S. A., & El-Sheery, N. I. (2014). Effect of nanoparticles on biological contamination of'in vitro'cultures and organogenic regeneration of banana. Australian Journal of Crop Science8(4), 612-624.##Hunt, R. (1982). Plant Growth Curves: The Functional Approach to Plant Growth Analysis. Edward Arnold Press, London.##Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), 3890. doi: 10.1038/s41598-019-40362-7.##Karagözler, A. A., Erdağ, B., Emek, Y. Ç., & Uygun, D. A. (2008). Antioxidant activity and proline content of leaf extracts from Dorystoechas hastata. Food Chemistry, 111(2), 400-407. doi: 10.1016/j.foodchem.2008.03.089.##Karami, S., Sanavy, S. A. M. M., Ghanehpoor, S., & Keshavarz, H. (2016). Effect of foliar zinc application on yield, physiological traits and seed vigor of two soybean cultivars under water deficit. Notulae Scientia Biologicae8(2), 181-191. doi: 10.15835/nsb829793.##Kermanshahi, M., & Noriani, H. (2019). Impact of zinc sulfate and nitrogen fertilizer on growth curves and crop production of green beans (Phaseolous vulgaris L.). Journal of Crop Nutrition Science, 5(1), 61-78.##Kheirizadeh Arough, Y., Seyed Sharifi, R., & Seyed Sharifi, R. (2016). Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. Journal of Plant Interactions, 11(1), 167-177. doi: 10.1080/17429145.2016.1262914.##Lamlom, S. F., Abdelghany, A. M., Ren, H., Ali, H. M., Usman, M., Shaghaleh, H., & El-Sorady, G. A. (2024). Revitalizing maize growth and yield in water-limited environments through silicon and zinc foliar applications. Heliyon10(15),‏ e35118. Doi: 10.1016/j.heliyon.2024.e35118.## Liu, D. Y., Zhang, W., Liu, Y. M., Chen, X. P., & Zou, C. Q. (2020). Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Frontiers in Plant Science11, 188. doi: 10.3389/fpls.2020.00188.##Liu, L., Zhu, B., & Wang, G. X. (2015). Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris. Environmental Science & Pollution Research International22(10), 7766-7775. doi: 10.1007/s11356-015-4121-7.##Ma, D., Sun, D., Wang, C., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y., & Guo, T. (2017). Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science, 8, 860. doi: 10.3389/fpls.2017.00860.##Mahmoodi, P., Yarnia, M., Rashidi, V., Amirnia, R., & Tarinejhad, A. (2018). Effects of nano and chemical fertilizers on physiological efficiency and essential oil yield of Borago officinalis L. Applied Ecology & Environtal Research, 16(4), 4773-4788. doi: 10.15666/aeer/1604_47734788.##Mansoor, N., Younus, A., Jamil, Y., & Shahid, M. (2019). Assessment of nutritional quality, yield and antioxidant activity of Triticum aestivum treated with zinc oxide nanoparticles. Digest Journal of Nanomaterials & Biostructures14(2), 491-500.##Manvelian, J., Weisany, W., Tahir, N. A. R., Jabbari, H., & Diyanat, M. (2021). Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Industrial Crops & Products172, 114069. doi: 10.1016/j.indcrop.2021.114069.##Martínez-Cuesta, N., Carciochi, W., Sainz-Rozas, H., Salvagiotti, F., Colazo, J. C., Wyngaard, N., & Barbieri, P. (2021). Effect of zinc application strategies on maize grain yield and zinc concentration in mollisols. Journal of Plant Nutrition44(4), 486-497.‏‏ doi: 10.1080/01904167.2020.1844754.##Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. doi: 10.1016/j.tplants.2004.08.009.##Moghadam, H. R. T., Zahedi, H., & Ashkiani, A. (2013). Effect of zinc foliar application on auxin and gibberellin hormones and catalase and superoxide dismutase enzyme activity of corn (Zea mays L.) under water stress. Maydica, 58(3-4), 218-223.##Mohamadi Dizaj, H., & Shekari, F. (2016). The effect of zinc sulfate on biofortification and morphological changes in spring wheat. Water & Soil Science, 26(3), 277-292. [In Persian].##Mohamadzadeh, M., Janmohammadi, M., Abbasi, A., Sabaghnia, N., & Ion, V. (2023). Physiochemical response of Cicer arietinum to zinc-containing mesoporous silica nanoparticles under water stress. Biotechnologia104(3), 263. doi: 10.5114/bta.2023.130729.##Mudgal, V., Madaan, N., & Mudgal, A. (2010). Biochemical mechanisms of salt tolerance in plants: A review. International Journal of Botany6(2), 136-143. doi: 10.3923/ijb.2010.136.143.##Mutambu, D., Kihara, J., Mucheru-Muna, M., Bolo, P., & Kinyua, M. (2023). Maize grain yield and grain zinc concentration response to zinc fertilization: A meta-analysis. Heliyon, 9, e16040. doi: 10.1016/j.heliyon.2023.e16040.##Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., & Yildiz, M. (2022). Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia2(4), 180-197. doi:‏ 10.3390/physiologia2040015.##Pagter, M., Bragato, C., & Brix, H. (2005). Tolerance and physiological responses of Phragmites australis to water deficit. Aquatic Botany81(4), 285-299. doi: 10.1016/j.aquabot.2005.01.002.##Qamari, P., Shekari, F., Afsahi, K., Tavakoli, A., Samimifard, A., Shekari, K., & Mastinu, A. (2023). Response of wheat cultivars to zinc application for seed yield and quality improvement. The Journal of Agricultural Science, 161(4), 549-562. doi: 10.1017/S0021859623000473.##Qiao, M., Hong, C., Jiao, Y., Hou, S., & Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants13(13), 1808.‏ 10.3390/plants13131808.##Roozitalab, M. H., Siadat, H., & Farshad, A. (2018). The Soils of Iran. World Soils Book Series. Springer Cham, Switzerland. doi: 10.1007/978-3-319-69048-3.##Saha, S., Begum, H. H., Nasrin, S., & Samad, R. (2020). Effects of drought stress on pigment and protein contents and antioxidant enzyme activities in five varieties of rice (Oryza sativa L.). Bangladesh Journal of Botany49(4), 997-1002. doi: 10.3329/bjb.v49i4.52516.##Sairam, R., Deshmukh, P., & Saxena, D. (1998). Role of antioxidant systems in wheat genotypes tolerance to water stress. Biologia Plantarum, 41(3), 387-394. doi: 10.1023/A:1001898310321.##Sairam, R. K., Rao, K. V., & Srivastava, G. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046. doi: 10.1016/S0168-9452(02)00278-9.##Salam, A., Khan, A. R., Liu, L., Yang, S., Azhar, W., Ulhassan, Z., & Gan, Y. (2022). Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 423, 127021. doi: 10.1016/j.jhazmat.2021.127021.##Sattar, A., Wang, X., Abbas, T., Sher, A., Ijaz, M., Ul-Allah, S., Irfan, M., Butt, M., Wahid, M. A., Cheema, M., & Fiaz, S. (2021). Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms. PloS One, 16(10), e0256984. doi: 10.1371/journal.pone.0256984.##Shafiq, B. A., Nawaz, F., Majeed, S., Aurangzaib, M., Al Mamun, A., Ahsan, M., Ahmad, K. S., Shehzad, M. A., Ali, M., Hashim, S., & Ul-Haq, T. (2021). Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress. Journal of Soil Science & Plant Nutrition21(3), 2229-2241. doi: 10.1007/s42729-021-00516-x.##Sharma, T., Sharma, S., Kamyab, H., & Kumar, A. (2020). Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. Journal of Cleaner Production247, 119138. doi: 10.1016/j.jclepro.2019.119138.## Shekari, F., Mohammadi, H., Pourmohammad, A., Avanes, A., & Benam, M. B. K. (2015). Spring wheat yielding and the content of protein and zinc in its grain depending on zinc fertilisation. Electronic Journal of Polish Agricultural Universities18(1),‏ #08.##Shekari, F., Shekari, F., & Esfandiari, E. (2009). Physiology of Crop Production. Maragheh University Press, Maragheh, Iran. [In Persian].##Shemi, R., Wang, R., Gheith, E. S. M., Hussain, H. A., Hussain, S., Irfan, M., & Wang, L. (2021). Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports, 11(1), 3195. doi: 10.1038/s41598-021-82264-7.##Shoormij, F., Mirlohi, A., Saeidi, G., Sabzalian, M. R., & Shirvani, M. (2024). Zinc foliar application may alleviate drought stress in wheat species through physiological changes. Plant Stress13, 100534. doi: 10.1016/j.stress.2024.100534.##Smirnoff, N., & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221(3), 1197-1214. doi: 10.1111/nph.15488.##Stewart, R. R., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245-248. doi: 10.1104/pp.65.2.245.##Sun, L., Song, F., Zhu, X., Liu, S., Liu, F., Wang, Y., & Li, X. (2021). Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Archives of Agronomy & Soil Science, 67(2), 245-259. doi: 10.1080/03650340.2020.1723003.##Tariq, A., Anjum, S. A., Randhawa, M. A., Ullah, E., Naeem, M., Qamar, R., & Nadeem, M. (2014). Influence of zinc nutrition on growth and yield behaviour of maize (Zea mays L.) hybrids. American Journal of Plant Sciences5(18), 2647-2684. doi: 10.4236/ajps.2014.518279.##Walinga, I., Van Der Lee, J. J., Houba, V. J. G., Van Vark, W., & Novozamsky, I. (1995). Digestion in tubes with H2SO4-salicylic acid-H2O2 and selenium and determination of Ca, K, Mg, N, Na, P, Zn. In: Walinga, I., Van Der Lee, J. J., Houba, V. J. G., Van Vark, W., & Novozamsky, I. (Eds.). Plant Analysis Manual. Springer, Dordrecht. pp: 7-45. doi: 10.1007/978-94-011-0203-2_2.##Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2011). Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress. Australian Journal of Crop Science, 5(11), 1441-1447.##Wu, S., Hu, C., Tan, Q., Li, L., Shi, K., Zheng, Y., & Sun, X. (2015). Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum). Acta Physiologiae Plantarum, 37, 167. doi: 10.1007/s11738-015-1919-3.##Xia, H., Kong, W., Wang, L., Xue, Y., Liu, W., Zhang, C., & Li, C. (2019). Foliar Zn spraying simultaneously improved concentrations and bioavailability of Zn and Fe in maize grains irrespective of foliar sucrose supply. Agronomy9(7), 386. doi: 10.3390/agronomy9070386.##Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae7(3), 50. doi: 10.3390/horticulturae7030050.##Yoshimura, K., Yabuta, Y., Ishikawa, T., & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 123(1), 223-234. doi: 10.1104/pp.123.1.223.##Zago, M. P., & Oteiza, P. I. (2001). The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Radical Biology & Medicine, 31(2), 266-274. doi: 10.1016/s0891-5849(01)00583-4.##Zhao, X., Tong, C., Pang, X., Wang, Z., Guo, Y., Du, F., & Wu, R. (2012). Functional mapping of ontogeny in flowering plants. Briefings in Bioinformatics, 13(3), 317-328. doi: 10.1093/bib/bbr054.##