Studying the expression of ZIP1, ZIP3 and ZIP6 genes in bread wheat under Zn deficiency conditions

Document Type : Research Paper

Authors

1 Faculty of Agriculture

2 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University

3 Department of Soil Science, Faculty of Agriculture, Urmia University

Abstract

Zn deficiency in the soil reduces plant yield and grain Zn content. The regulation of ZIP (ZRT/IRT-like protein) family genes is one of the main mechanisms of plant to confront to Zn deficiency stress. To investigate the expression of ZIP1, ZIP3 and ZIP6 genes in roots and leaves of Zn-efficient and inefficient wheat cultivars under Zn deficiency conditions, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in greenhouse. Bayat and Niknejad (Zn-efficient) and Hirmand and Karaj 1 (Zn-inefficient) cultivars were grown under Zn deficiency and adequacy conditions and the relative expression of the genes were measured in root and leaf at two growth stages, 28 days after germination (vegetative) and 30% of flowering (reproductive). The results revealed a significant (P≤0.01) increase in expression of all three studied genes in Zn-efficient than -inefficient cultivars under Zn deficiency conditions. The expression of the ZIP1 in root was significantly more than that of leaf in both vegetative and reproductive stages, while ZIP3 and ZIP6 genes were expressed in both root and leaf. A significant (P≤0.05) and positive correlation was observed between ZIP6 expression in leaves and seed grain Zn content at reproductive stage. In conclusion, with regard to the increased expression of ZIP1 in root and ZIP3 and ZIP6 in both root and leaf, it may be resulted that ZIP1 have a major role in Zn uptake from the roots, while ZIP3 and ZIP6 probably involved in Zn uptake and translocation.


Keywords


Abdoli, M. and Esfandiari, E. 2014. Effect of zinc foliar application on the quantitative and qualitative yield and seedlings growth characteristics of bread wheat (cv. Kohdasht). Dryland Agriculture 3 (1): 77-90. (In Persian with English Abstract).##Assunção, A. G. L., Martins, P. D. A. C., De Folter, S., Vooijs, R., Schat, H. and Aarts, M. G. M. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyper-accumulator Thlaspi caerulescensPlant, Cell and Environment 24 (2): 217-226.‏##Astudillo, C., Fernandez, A., Blair, M. W. and Cichy, K. A. 2013. The Phaseolus vulgaris ZIP gene family: Identification, characterization, mapping and gene expression. Frontiers in Plant Science 4: 286.##Baghban-Tabiat, S. and Rasouli-Sadaghiani, M. 2012. Investigation of Zn utilization and acquisition efficiency in different wheat genotypes at greenhouse conditions. Journal of Science and Technology of Greenhouse Culture 3 (2):17-32. (In Persian with English Abstract).##Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H. and Mori, S. 2002. Cloning an iron-regulated metal transporter from rice. Journal of Experimental Botany 53 (374): 1677-1682.##Cakmak, I., Graham, R. and Welch, R. M. 2002. Agricultural and molecular genetic approaches to improving nutrition and preventing micronutrient malnutrition globally. In: Cakmak I. and Welch, R. M. (Eds.). Encyclopedia of life support systems. Eolss Publishers, Oxford. pp: 1075-1099.##Chen, W. R., Feng, Y. and Chao, Y. E. 2008. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology 55 (3): 400-409.‏##Durmaz, E., Coruh, C., Dinler, G., Grusak, M. A., Peleg, Z., Saranga, Y., Fahima, T., Yazici, A., Ozturk, L., Cakmak, I. and Budak, H. 2011. Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat. Plant Molecular Biology Reporter 29 (3): 582-596.‏##Emam, Y. 2013. Cereal crops. Shiraz University Press, Shiraz, Iran. (In Persian with English Abstract).##Evens, N. P., Buchner, P., Williams, L. E. and Hawkesford, M. J. 2017. The role of ZIP transporters and group F bZIP transcription factors in the Zn‐deficiency response of wheat (Triticum aestivum L.). The Plant Journal 92 (2): 291-304.##Ghasemi, S., Khoshgoftarmanesh, A. H., Sayed-Tabatabaei, B. E. and Khaksar, G. 2015. Expression level of ZIP1 and ZIP5 transporters in root and leaves of three different zinc-efficiency wheat cultivars. Journal of Plant Process and Function 4 (11): 23-32. (In Persian with English Abstract).##Graham, R. D., Asher, J. S. and Hynes, S. C. 1992. Selecting zinc-efficient cereal genotypes for soil of low zinc status. Plant and Soil 146: 241-250.##Graham, R. D. and Rengel, Z. 1993. Genotypic variation in Zn uptake and utilization by plants. In: Robson, A. D. (Ed). Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp: 107-114.##Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L. and Eide, D. 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences 95 (12): 7220-7224.##Halim, G., Emam, Y. and Shakeri, E. 2018. Evaluation of yield, yield components and stress tolerance indices in bread wheat cultivars at post-anthesis irrigation cut-off. Journal of Crop Production and Processing 7 (4): 121-134. (In Persian with English Abstract).##Ishimaru, Y., Masuda, H., Suzuki, M., Bashir, K., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. 2007. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Journal of Experimental Botany 58 (11): 2909-2915.‏##Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. 2005. OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany 56 (422): 3207-3214.‏##Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. 2006. Rice plants take up iron as an Fe3+‐phytosiderophore and as Fe2+. The Plant Journal 45 (3): 335-346.##Kalayci, M., Torun, B., Eker, S., Aydin, M., Ozturk, L. and Cakmak, I. 1999. Grain yield, zinc efficiency and zinc concentration of wheat genotypes grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Research 63: 87-98.##Kambe, T., Yamaguchi-Iwai, Y., Sasaki, R. and Nagao, M. 2004. Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences 61 (1): 49-68.‏##Kavitha, P., Kuruvilla, S. and Mathew, M. 2015. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry 97: 165-74.##Khoshgoftarmanesh, A. H., Sadrarhami, A., Sharifi, H. R., Afiuni, D. and Schulin, R. 2009. Selecting zinc-efficient wheat genotypes with high grain yield using a stress tolerance index. Agronomy Journal 101 (6): 1409-1416.##Lee, S., Jeong, H. J., Kim, S. A., Lee, J., Guerinot, M. L. and An, G. 2010a. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology 73 (4-5): 507-517.‏##Lee, S., Kim, S. A., Lee, J., Guerinot, M. L. and An, G. 2010b. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Molecules and Cells 29 (6): 551-558.‏##Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J. and Chen, R. 2013. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology 13: 114.‏##Li, S., Zhou, X., Li, H., Liu, Y., Zhu, L., Guo, J., Liu, X., Fan, Y., Chen, J. and Chen, R. 2015. Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic ArabidopsisPloS One 10 (8): e0136647.##Lopez-Millan, A. F., Ellis, D. R. and Grusak, M. A. 2004. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Molecular Biology 54 (4): 583-596.##Milner, M. J., Seamon, J., Craft, E. and Kochian, L. V. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany 64 (1): 369-381.##Moreau, S., Thomson, R. M., Kaiser, B. N., Trevaskis, B., Guerinot, M. L., Udvardi, M. K., Puppo, A. and Day, D. A. 2002. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. Journal of Biological Chemistry 277 (7): 4738-4746.##Pandey, N., Gupta, B. and Pathak, G. C. 2012. Antioxidant responses of pea genotypes to zinc deficiency. Russian Journal of Plant Physiology 59 (2): 198-205.##Pedas, P., Schjoerring, J. K. and Husted, S. 2009. Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry 47 (5): 377-383.##Pfaffi, M. W. 2004. Quantification strategies in real-time PCR. In: Bustin, S. A. (Ed.). The real-time PCR encyclopedia A-Z of quantitative PCR. International University Line, La Jolla, CA, USA.
pp: 87-112.##Ramesh, S. A., Choimes, S. and Schachtman, D. P. 2004. Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Molecular Biology 54 (3): 373-385.##Ramesh, S. A., Shin, R., Eide, D. J. and Schachtman, D. P. 2003. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology 133 (1): 126-134.‏##Rengel, Z. 2001. Genotypic differences in micronutrient use efficiency in crops. Communications in Soil Science and Plant Analysis 32 (7-8): 1163-1186.##Sadeghzadeh, B. 2015. Soil-zinc application required to improve bread and durum wheat production under cold rainfed conditions. Iranian Dryland Agronomy Journal 4 (2): 149-162. (In Persian with English Abstract).##Taylor, K. M., Morgan, H. E., Johnson, A. and Nicholson, R. I. 2004. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochemical Journal 377 (1): 131-139.‏##Tiong, J., McDonald, G. K., Genc, Y., Pedas, P., Hayes, J. E., Toubia, J., Langridge, P. and Huang, C. Y. 2014. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytologist 201 (1): 131-143.##Tiong, J., McDonald, G. K., Genc, Y., Shirley, N., Langridge, P. and Huang, C. Y. 2015. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root‐to‐shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist 207 (4): 1097-1109.‏