Abou-Elwafa, S. F., & Shehzad, T. (2021). Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (
Triticum aestivum L.).
Genetic Resources & Crop Evolution,
68, 711-728. doi:
10.1007/s10722-020-01018-y.##Afzal, F., Ali, A., Ullah, Z., Sher, H., Gul, A., Mujeeb-Kazi, A., & Arshad, M. (2018). Terminal drought stress adaptability in synthetic derived bread wheat is explained by alleles of major adaptability genes and superior phenology.
International Journal of Agriculture & Biology, 20, 1623-1631. doi:
10.17957/IJAB/15.0680.##Afzal, F., Li, H., Gul, A., Subhani, A., Ali, A., Mujeeb-Kazi, A., Ogbonnaya, F., Trethowan, R., Xia, X., & He, Z. (2019). Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3 Genes, Genomes, Genetics,
9(6), 1957-1973. doi:
10.1534/g3.119.400010.##Aktaş, H. (2016). Drought tolerance indices of selected landraces and bread wheat (
Triticum aestivum L.) genotypes derived from synthetic wheats.
Applied Ecology & Environmental Research,
14(4), 177-189. doi:
10.15666/aeer/1404_177189.##Ali, I., Khan, A., Ali, A., Ullah, Z., Dai, D. Q., Khan, N., Khan, A., Al-Tawaha, A. R., & Sher, H. (2022). Iron and zinc micronutrients and soil inoculation of
Trichoderma harzianum enhance wheat grain quality and yield.
Frontiers in Plant Science,
13, 960948. doi:
10.3389/fpls.2022.960948.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2019). Investigating grain yield and yield stability of wheat cultivars introduced in Iran over the last half century.
Cereal Research,
9(2), 157-167. doi:
10.22124/C.2019.13311.1492.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2021). Dissection of the genetic basis of genotype-by-environment interactions for grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars.
Scientific Reports,
11(1), 17742. doi:
10.1038/s41598-021-96576-1.##Amanuel, M., Gebre, D., & Debele, T. (2018). Performance of bread wheat genotypes under different environment in lowland irrigated areas of Afar region Ethiopia.
African Journal of Agricultural Research,
13(17), 927-933. doi:
10.5897/AJAR2017.12669.##Amiri, R., Minhas, N. M., Farrakh, A. G., Farrakh, S., Ali, A., Bux, H., & Kazi, M. (2014). Phenotypic and genotypic characterization of wheat landraces of Pakistan.
Emirates Journal of Food & Agriculture,
26(2), 157-163. doi:
10.9755/ejfa.v26i2.17008.##Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. U, Sajid, M., Aslam, H. M. U., Alam, M. M., & Rizwan, M. (2020). Assessment of grain yield indices in response to drought stress in wheat (
Triticum aestivum L.).
Saudi Journal of Biological Sciences,
27(7), 1818-1823. doi:
10.1016/j.sjbs.2019.12.009.##Bahraini Vijuyeh, V., Dadashi, M. R., & Nazeri, S. M. (2019). Assessment of tolerance to drought stress at reproductive phase in some wheat genotypes (
Triticum aestivum L.) using drought tolerance and susceptibility indices.
Iranian Journal of Field Crops Research,
17(1), 111-121. [In Persian]. doi:
10.22067/GSC.V17I1.69690.##Ballesta, P., Mora, F., & Del Pozo, A. (2020). Association mapping of drought tolerance indices in wheat: QTL-rich regions on chromosome 4A.
Scientia Agricola,
77(2), e20180153. doi:
10.1590/1678-992X-2018-0153.##Bektas, H., Hohn, C. E., & Waines, J. G. (2016). Root and shoot traits of bread wheat (
Triticum aestivum L.) landraces and cultivars.
Euphytica,
212, 297-311. doi:
10.1007/s10681-016-1770-7.##Blum, A. (1988). Plant Breeding for Stress Environment. CRC Press, Boca Raton, FL. pp. 38-78. doi: 10.1201/9781351075718.##Cappelli, A., & Cini, E. (2021). Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: A systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality.
Sustainability,
13(5), 2608. doi:
10.3390/su13052608.##Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., & Klukas, C. (2014). Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis.
The Plant Cell,
26(12), 4636-4655. doi:
10.1105/tpc.114.129601.##Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., & Elsanafawy, N. E. (2021). Evaluation of drought tolerance of some wheat (
Triticum aestivum L.) genotypes through phenology, growth, and physiological indices.
Agronomy,
11(9), 1792. doi:
10.3390/agronomy11091792.##Dietz, K. J., Zörb, C., & Geilfus, C. M. (2021). Drought and crop yield.
Plant Biology,
23(6), 881-893. doi:
10.1111/plb.13304.##Dorostkar, S., Dadkhodaie, A., & Heidari, B. (2015). Evaluation of grain yield indices in hexaploid wheat genotypes in response to drought stress.
Archives of Agronomy & Soil Science,
61(3), 397-413. doi:
10.1080/03650340.2014.936855.##Eftekhari, A., Baghizadeh, A., Abdoshahi, R., & Yaghoubi, M. M. (2020). Evaluation of grain yield, agronomical traits and drought tolerance indices in some bread wheat cultivars.
Journal of Crop Breeding,
11(32), 11-21. [In Persian]. doi:
10.29252/jcb.11.32.11.##Eivazi, A., Abdollahi, S., Salekdeh, G. H., Majidi, I., Mohamadi, A., & Pirayeshfar, B. (2006). Effect of drought and salinity stress on quality related traits in wheat (
Triticum aestivum L.) varieties.
Iranian Journal of Crop Science,
7(3), 252-267. [In Persian]. dor:
20.1001.1.15625540.1384.7.3.6.2.##Eslami, P., Bernousi, I., Aharizad, S., & Jafarzadeh, J. (2021). Evaluation of drought stress tolerance in barley lines using tolerance indices.
Journal of Crop Breeding,
13(38), 71-83. [In Persian]. doi:
10.52547/jcb.13.38.71.##FAO. (2022). FAO Statistical Databases. Food & Agriculture Organization of the United Nations. Retrieved 3 March 2023, from
http://www.fao.org/faostat.##Farshadfar, E., & Sutka, J. (2002). Screening drought tolerance criteria in maize.
Acta Agronomica Hungarica,
50(4), 411-416. doi:
10.1556/AAgr.50.2002.4.3.##Farshadfar, E., Poursiahbidi, M. M., & Safavi, S. M. (2013). Assessment of drought tolerance in land races of bread wheat based on resistance/tolerance indices.
International Journal of Advanced Biological & Biomedical Research,
1(2), 143-158.##Fernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Aug. 13-18, Taiwan. pp. 257-270. doi:
10.22001/wvc.72511.##Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I: Grain yield response.
Australian Journal of Agricultural Research,
29(5), 897-912. doi:
10.1071/AR9780897.##Khan, A., Ali, A., Ullah, Z., Ali, I., Kaushik, P., Alyemeni, M. N., Rasheed, A., & Sher, H. (2022). Exploiting the drought tolerance of wild
Elymus species for bread wheat improvement.
Frontiers in Plant Science,
13, 982844. doi:
10.3389/fpls.2022.982844.##Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant Physiological Ecology. 2
nd Ed. Springer. doi:
10.2307/176572.##Lan, J. (1998). Comparison of evaluating methods for agronomic drought resistance in crops.
Acta Agriculturae Boreali-Occidentalis Sinica,
7, 85-87.##Mir, R. A., Sharma, A., & Mahajan, R. (2020). Crop Landraces: Present Threats and Opportunities for Conservation. In: Salgotra, R., & Zargar, S. (Eds.). Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer. pp. 335-349. doi:
10.1007/978-981-15-0156-2_13.##Moosavi, S. S., Yazdi Samadi, B., Naghavi, M. R., Zali, A. A., Dashti, H., & Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes.
Desert,
12(2), 165-178. doi:
10.22059/JDESERT.2008.27115.##Naghavi, M. R., Moghaddam, M., Toorchi, M., & Shakiba, M. R. (2016). Evaluation of spring wheat cultivars based on drought resistance indices.
Journal of Crop Breeding,
8(17), 197-207. [In Persian]. doi:
10.18869/acadpub.jcb.8.17.207.##Nehe, A., Akin, B., Sanal, T., Evlice, A. K., Unsal, R., Dinçer, N., Demir, L., Geren, H., Sevim, I., & Orhan, S. (2019). Genotype × environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010.
Plos One,
14, e0219432. doi:
10.1371/journal.pone.0219432.##Rabieyan, E., Bihamta, M. R., Esmaeilzadeh Moghaddam, M., Mohammadi, V., & Alipour, H. (2022). Genome-wide association mapping and genomic prediction of agronomical traits and breeding values in Iranian wheat under rain-fed and well-watered conditions.
BMC Genomics,
23(1), 1-25. doi:
10.1186/s12864-022-08968-w.##Rabieyan, E., Bihamta, M. R., Esmaeilzadeh Moghaddam, M., Alipour, H., Mohammadi, V., Azizyan, K., & Javid, S. (2023). Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat.
BMC Plant Biology,
23(1), 431. doi:
10.1186/s12870-023-04416-3.##Rahimi, Y., Bihamta, M. R., Taleei, A., Alipour, H., & Ingvarsson, P. K. (2019). Applying an artificial neural network approach for drought tolerance screening among Iranian wheat landraces and cultivars grown under well-watered and rain-fed conditions.
Acta Physiologiae Plantarum,
41, 156. doi:
10.1007/s11738-019-2946-2.##Rahmati, H., Nakhzari Moghadam, A., Rahemi Karizaki, A., & Evarsaji, Z. (2020). Evaluation of drought tolerance in durum wheat genotypes using drought tolerance indices.
Journal of Crop Breeding,
12(33), 174-183. [In Persian]. doi:
10.29252/jcb.12.33.174.##Rauf, S., Teixeira-da-Silva, J. A., Khan, A. A., & Naveed, A. (2010). Consequences of plant breeding on genetic diversity.
International Journal of Plant Breeding,
4(1), 1-21.##Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments.
Crop Science,
21(6), 943-946. doi:
10.2135/cropsci1981.0011183X002100060033x.##Salam, A., Ali, A., Afridi, M. S., Ali, S., & Ullah, Z. (2022). Agrobiodiversity: Effect of drought stress on the eco-physiology and morphology of wheat. In: Öztürk, M., Khan, S. M., Altay, V., Efe, R., Egamberdieva, D., & Khassanov, F. O. (Eds.). Biodiversity, Conservation and Sustainability in Asia. Springer, Cham, Switzerland. pp. 597-618. doi:
10.1007/978-3-030-73943-0_33.##Schneider, K. A., Rosales-Serna, R., Ibarra-Perez, F., Cazares-Enriquez, B., Acosta-Gallegos, J. A., Ramirez-Vallejo, P., Wassimi, N., & Kelly, J. D. (1997). Improving common bean performance under drought stress.
Crop Science,
37(1), 43-50. doi:
10.2135/cropsci1997.0011183X003700010007x.##Seki, M., Kameiy, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: Common and different paths for plant protection.
Current Opinion in Biotechnology,
14(2), 194-199. doi:
10.1016/s0958-1669(03)00030-2.##Shabannejad, M., Bihamta, M. R., Majidi-Hervan, E., Alipour, H., & Ebrahimi, A. (2022). Assessment of genetic diversity of some Iran bread wheat (
Triticum aestivum L.) landraces using multivariate statistical analysis.
Environmental Stresses in Crop Sciences,
15(1), 1-17. [In Persian]. doi:
10.22077/escs.2020.3713.1893.##Shibani Rad, A., Farshadfar, E., & Najajfi, A. (2018). Evaluation of drought tolerance in some bread wheat genotypes using drought resistance.
Journal of Plant Ecophysiology,
9(31), 1-14. [In Persian].##Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions.
Field Crops Research,
98(2-3), 222-229. doi:
10.1016/j.fcr.2006.02.001.##Tahmasebi, S., Dastfal, M., Zali, H., & Rajaei, M. (2018). Drought tolerance evaluation of bread heat cultivars and promising lines in warm and dry climate of the south.
Cereal Research,
8(2), 209-225. doi:
10.22124/C.2018.10434.1398.##Ullah, M. I., Mahpara, S., Bibi, R., Shah, R. U., Ullah, R., Abbas, S., Ullah, M. I., Hassan, A. M., El-Shehawi, A. M., Brestic, M., & Zivcak, M. (2021). Grain yield and correlated traits of bread wheat lines: Implications for yield improvement.
Saudi Journal of Biological Sciences,
28(10), 5714-5719. doi:
10.1016/j.sjbs.2021.06.006.##Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. doi:
10.2135/cropsci1984.0011183X002400050026x.##Zali, H., Hasanloo, T., Sofalian, O., Asghari, A., & Zeinalabedini, M. (2017). Appropriate strategies for selection of drought tolerant genotypes in canola.
Journal of Crop Breeding,
8(20), 77-90. [In Persian]. doi:
https://doi.org/20.1001.1.22286128.1395.8.20.7.4.##Zhang, P., Dreisigacker, S., Buerkert, A., Alkhanjari, S., Melchinger, A. E., & Warburton, M. L. (2006). Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers.
Genetic Resources & Crop Evolution,
53(7), 1351-1360. doi:
10.1007/s10722-005-4675-1.