Evaluation of tolerance to drought stress in bread wheat (Triticum aestivum L.) cultivars and landraces using tolerance indices

Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia

2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

Abstract

Introduction
Drought is one of the most destructive stresses affecting the growth and development of plants. The increase in global population and wheat demand as well as drought period has increased the importance of breeding for drought tolerance in bread wheat. The use of selection indices for drought tolerance is an effective strategy to screen and identify wheat tolerant genotypes in wheat breeding programs. The objective of the current study was to investigate the relationships between tolerance indices, to determine the efficiency of indices in separating genotypes, and finally to select drought tolerant genotypes in bread wheat cultivars and landraces.
Materials and methods
To investigate the effect of drought stress on grain yield of bread wheat, an experiment was conducted in a simple alpha lattice design under normal irrigation and drought stress conditions in the research field of Dryland Agricultural Research Institute, Maragheh, Iran, in two consecutive years, 2017-2018 and 2018-2019. The plant materials were 300 bread wheat genotypes, including 210 landraces and 90 commercial cultivars (15 dryland and 75 irrigated cultivars; 64 spring, 15 winter, and 11 facultative cultivars). To evaluate sensitivity or tolerance of genotypes to drought stress and identify drought-tolerant genotypes, various indices such as tolerance index (TOL), mean productivity (MP), stress sensitivity index (SSI), stress tolerance index (STI), geometric mean productivity (GMP), harmonic mean (HM), drought tolerance index (DI), abiotic tolerance index (ATI), and modified stress tolerance index (MSTI) were calculated using grain yield under normal and stress conditions for all genotypes. Also, to increase the selection efficiency and screen drought tolerant genotypes, the SIIG index was calculated based on the integration of 12 studied indices. The analysis of variance was performed using Agricolae package, heirarchical clustering of bread wheat genotypes using heatmap3, RColorBrewer, dendextend, gplots and colorspace packages, bi-plot diagrams using factoextra package, and heatmap diagram of correlation among grain yield under normal irrigation and drought stress conditions and stress tolerance indices using corrplot package in R4.2.2 software.
Research findings
The results of analysis of variance for grain yield showed that the environment, genotype, and genotype×environment interaction effects were significant (P<0.001). The significance of the effect of genotype indicates the appropriate diversity among the genotypes, and the significance of the interaction between genotype and environment indicates different responses of genotypes to changes in environmental conditions. Cluster analysis based on the data of each year and the average of two years classified the genotypes into three clusters. The results of principal component analysis (PCA) showed that cultivars Shanghai, Naz, Falat, Bam and landraces 626358, 623109 and 621908 in the first year, as well as cultivars Shanghai, Koohdasht, Karim, Pishgam, and landraces 628189, 627460, and 627616 in the second year were drought tolerant genotypes, while based on the average data of two years, cultivars Koohdasht, Karim, Pishgam, Adl, Naz, and landraces 628189, 627460, 624944, and 627299 were identified as drought tolerant genotypes. The estimation of correlation coefficients showed that grain yield had a negative and significant correlation with SSI and TOL indices and a positive and significant correlation with other indices, especially MP, GMP, HM, STI and K2STI.  
Conclusion
The results of drought tolerance indices as well as the SIIG index, the old spring and irrigated cultivars Adl, Naz, and Shanghai and the new spring and dryland cultivars Karim and Koohdasht, as well as the landraces 626358 (originating from Isfahan) and 621908 (originating from Arak) were drought tolerant and high performance under two normal and drought stress conditions. The results obtained from this study provided valuable information on the selection of drought tolerant genotypes, which can be used to produce new cultivars with high yield potential in wheat breeding programs. The tolerant genotypes identified in this experiment can also be used as parents for genetic analysis, gene mapping, and improvement of drought stress tolerance in wheat.

Keywords

Main Subjects


Abou-Elwafa, S. F., & Shehzad, T. (2021). Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genetic Resources & Crop Evolution68, 711-728. doi: 10.1007/s10722-020-01018-y.##Afzal, F., Ali, A., Ullah, Z., Sher, H., Gul, A., Mujeeb-Kazi, A., & Arshad, M. (2018). Terminal drought stress adaptability in synthetic derived bread wheat is explained by alleles of major adaptability genes and superior phenology. International Journal of Agriculture & Biology, 20, 1623-1631. doi: 10.17957/IJAB/15.0680.##Afzal, F., Li, H., Gul, A., Subhani, A., Ali, A., Mujeeb-Kazi, A., Ogbonnaya, F., Trethowan, R., Xia, X., & He, Z. (2019). Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3 Genes, Genomes, Genetics, 9(6), 1957-1973. doi: 10.1534/g3.119.400010.##Aktaş, H. (2016). Drought tolerance indices of selected landraces and bread wheat (Triticum aestivum L.) genotypes derived from synthetic wheats. Applied Ecology & Environmental Research, 14(4), 177-189. doi: 10.15666/aeer/1404_177189.##Ali, I., Khan, A., Ali, A., Ullah, Z., Dai, D. Q., Khan, N., Khan, A., Al-Tawaha, A. R., & Sher, H. (2022). Iron and zinc micronutrients and soil inoculation of Trichoderma harzianum enhance wheat grain quality and yield. Frontiers in Plant Science, 13, 960948. doi: 10.3389/fpls.2022.960948.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2019). Investigating grain yield and yield stability of wheat cultivars introduced in Iran over the last half century. Cereal Research, 9(2), 157-167. doi: 10.22124/C.2019.13311.1492.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2021). Dissection of the genetic basis of genotype-by-environment interactions for grain yield and main agronomic traits in Iranian bread wheat landraces and cultivars. Scientific Reports11(1), 17742. doi: 10.1038/s41598-021-96576-1.##Amanuel, M., Gebre, D., & Debele, T. (2018). Performance of bread wheat genotypes under different environment in lowland irrigated areas of Afar region Ethiopia. African Journal of Agricultural Research13(17), 927-933. doi: 10.5897/AJAR2017.12669.##Amiri, R., Minhas, N. M., Farrakh, A. G., Farrakh, S., Ali, A., Bux, H., & Kazi, M. (2014). Phenotypic and genotypic characterization of wheat landraces of Pakistan. Emirates Journal of Food & Agriculture, 26(2), 157-163. doi: 10.9755/ejfa.v26i2.17008.##Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. U, Sajid, M., Aslam, H. M. U., Alam, M. M., & Rizwan, M. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences27(7), 1818-1823. doi: 10.1016/j.sjbs.2019.12.009.##Bahraini Vijuyeh, V., Dadashi, M. R., & Nazeri, S. M. (2019). Assessment of tolerance to drought stress at reproductive phase in some wheat genotypes (Triticum aestivum L.) using drought tolerance and susceptibility indices. Iranian Journal of Field Crops Research, 17(1), 111-121. [In Persian]. doi: 10.22067/GSC.V17I1.69690.##Ballesta, P., Mora, F., & Del Pozo, A. (2020). Association mapping of drought tolerance indices in wheat: QTL-rich regions on chromosome 4A. Scientia Agricola, 77(2), e20180153. doi: 10.1590/1678-992X-2018-0153.##Bektas, H., Hohn, C. E., & Waines, J. G. (2016). Root and shoot traits of bread wheat (Triticum aestivum L.) landraces and cultivars. Euphytica, 212, 297-311. doi: 10.1007/s10681-016-1770-7.##Blum, A. (1988). Plant Breeding for Stress Environment. CRC Press, Boca Raton, FL. pp. 38-78. doi: 10.1201/9781351075718.##Cappelli, A., & Cini, E. (2021). Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: A systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability, 13(5), 2608. doi: 10.3390/su13052608.##Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., & Klukas, C. (2014). Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. The Plant Cell, 26(12), 4636-4655. doi: 10.1105/tpc.114.129601.##Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., & Elsanafawy, N. E. (2021). Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy11(9), 1792. doi: 10.3390/agronomy11091792.##Dietz, K. J., Zörb, C., & Geilfus, C. M. (2021). Drought and crop yield. Plant Biology23(6), 881-893. doi: 10.1111/plb.13304.##Dorostkar, S., Dadkhodaie, A., & Heidari, B. (2015). Evaluation of grain yield indices in hexaploid wheat genotypes in response to drought stress. Archives of Agronomy & Soil Science61(3), 397-413. doi: 10.1080/03650340.2014.936855.##Eftekhari, A., Baghizadeh, A., Abdoshahi, R., & Yaghoubi, M. M. (2020). Evaluation of grain yield, agronomical traits and drought tolerance indices in some bread wheat cultivars. Journal of Crop Breeding, 11(32), 11-21. [In Persian]. doi: 10.29252/jcb.11.32.11.##Eivazi, A., Abdollahi, S., Salekdeh, G. H., Majidi, I., Mohamadi, A., & Pirayeshfar, B. (2006). Effect of drought and salinity stress on quality related traits in wheat (Triticum aestivum L.) varieties. Iranian Journal of Crop Science, 7(3), 252-267. [In Persian]. dor: 20.1001.1.15625540.1384.7.3.6.2.##Eslami, P., Bernousi, I., Aharizad, S., & Jafarzadeh, J. (2021). Evaluation of drought stress tolerance in barley lines using tolerance indices. Journal of Crop Breeding, 13(38), 71-83. [In Persian]. doi: 10.52547/jcb.13.38.71.##FAO. (2022). FAO Statistical Databases. Food & Agriculture Organization of the United Nations. Retrieved 3 March 2023, from http://www.fao.org/faostat.##Farshadfar, E., & Sutka, J. (2002). Screening drought tolerance criteria in maize. Acta Agronomica Hungarica50(4), 411-416. doi: 10.1556/AAgr.50.2002.4.3.##Farshadfar, E., Poursiahbidi, M. M., & Safavi, S. M. (2013). Assessment of drought tolerance in land races of bread wheat based on resistance/tolerance indices. International Journal of Advanced Biological & Biomedical Research, 1(2), 143-158.##Fernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Aug. 13-18, Taiwan. pp. 257-270. doi: 10.22001/wvc.72511.##Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I: Grain yield response. Australian Journal of Agricultural Research, 29(5), 897-912. doi: 10.1071/AR9780897.##Khan, A., Ali, A., Ullah, Z., Ali, I., Kaushik, P., Alyemeni, M. N., Rasheed, A., & Sher, H. (2022). Exploiting the drought tolerance of wild Elymus species for bread wheat improvement. Frontiers in Plant Science, 13, 982844. doi: 10.3389/fpls.2022.982844.##Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant Physiological Ecology. 2nd Ed. Springer. doi: 10.2307/176572.##Lan, J. (1998). Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-Occidentalis Sinica, 7, 85-87.##Mir, R. A., Sharma, A., & Mahajan, R. (2020). Crop Landraces: Present Threats and Opportunities for Conservation. In: Salgotra, R., & Zargar, S. (Eds.). Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer. pp. 335-349. doi: 10.1007/978-981-15-0156-2_13.##Moosavi, S. S., Yazdi Samadi, B., Naghavi, M. R., Zali, A. A., Dashti, H., & Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert, 12(2), 165-178. doi: 10.22059/JDESERT.2008.27115.##Naghavi, M. R., Moghaddam, M., Toorchi, M., & Shakiba, M. R. (2016). Evaluation of spring wheat cultivars based on drought resistance indices. Journal of Crop Breeding, 8(17), 197-207. [In Persian]. doi: 10.18869/acadpub.jcb.8.17.207.##Nehe, A., Akin, B., Sanal, T., Evlice, A. K., Unsal, R., Dinçer, N., Demir, L., Geren, H., Sevim, I., & Orhan, S. (2019). Genotype × environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. Plos One, 14, e0219432. doi: 10.1371/journal.pone.0219432.##Rabieyan, E., Bihamta, M. R., Esmaeilzadeh Moghaddam, M., Mohammadi, V., & Alipour, H. (2022). Genome-wide association mapping and genomic prediction of agronomical traits and breeding values in Iranian wheat under rain-fed and well-watered conditions. BMC Genomics23(1), 1-25. doi: 10.1186/s12864-022-08968-w.##Rabieyan, E., Bihamta, M. R., Esmaeilzadeh Moghaddam, M., Alipour, H., Mohammadi, V., Azizyan, K., & Javid, S. (2023). Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biology, 23(1), 431. doi: 10.1186/s12870-023-04416-3.##Rahimi, Y., Bihamta, M. R., Taleei, A., Alipour, H., & Ingvarsson, P. K. (2019). Applying an artificial neural network approach for drought tolerance screening among Iranian wheat landraces and cultivars grown under well-watered and rain-fed conditions. Acta Physiologiae Plantarum41, 156. doi: 10.1007/s11738-019-2946-2.##Rahmati, H., Nakhzari Moghadam, A., Rahemi Karizaki, A., & Evarsaji, Z. (2020). Evaluation of drought tolerance in durum wheat genotypes using drought tolerance indices. Journal of Crop Breeding, 12(33), 174-183. [In Persian]. doi: 10.29252/jcb.12.33.174.##Rauf, S., Teixeira-da-Silva, J. A., Khan, A. A., & Naveed, A. (2010). Consequences of plant breeding on genetic diversity. International Journal of Plant Breeding, 4(1), 1-21.##Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21(6), 943-946. doi:  10.2135/cropsci1981.0011183X002100060033x.##Salam, A., Ali, A., Afridi, M. S., Ali, S., & Ullah, Z. (2022). Agrobiodiversity: Effect of drought stress on the eco-physiology and morphology of wheat. In: Öztürk, M., Khan, S. M., Altay, V., Efe, R., Egamberdieva, D., & Khassanov, F. O. (Eds.). Biodiversity, Conservation and Sustainability in Asia. Springer, Cham, Switzerland. pp. 597-618. doi: 10.1007/978-3-030-73943-0_33.##Schneider, K. A., Rosales-Serna, R., Ibarra-Perez, F., Cazares-Enriquez, B., Acosta-Gallegos, J. A., Ramirez-Vallejo, P., Wassimi, N., & Kelly, J. D. (1997). Improving common bean performance under drought stress. Crop Science, 37(1), 43-50. doi: 10.2135/cropsci1997.0011183X003700010007x.##Seki, M., Kameiy, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Current Opinion in Biotechnology, 14(2), 194-199. doi: 10.1016/s0958-1669(03)00030-2.##Shabannejad, M., Bihamta, M. R., Majidi-Hervan, E., Alipour, H., & Ebrahimi, A. (2022). Assessment of genetic diversity of some Iran bread wheat (Triticum aestivum L.) landraces using multivariate statistical analysis. Environmental Stresses in Crop Sciences, 15(1), 1-17. [In Persian]. doi: 10.22077/escs.2020.3713.1893.##Shibani Rad, A., Farshadfar, E., & Najajfi, A. (2018). Evaluation of drought tolerance in some bread wheat genotypes using drought resistance. Journal of Plant Ecophysiology, 9(31), 1-14. [In Persian].##Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2-3), 222-229. doi: 10.1016/j.fcr.2006.02.001.##Tahmasebi, S., Dastfal, M., Zali, H., & Rajaei, M. (2018). Drought tolerance evaluation of bread heat cultivars and promising lines in warm and dry climate of the south. Cereal Research, 8(2), 209-225. doi: 10.22124/C.2018.10434.1398.##Ullah, M. I., Mahpara, S., Bibi, R., Shah, R. U., Ullah, R., Abbas, S., Ullah, M. I., Hassan, A. M., El-Shehawi, A. M., Brestic, M., & Zivcak, M. (2021). Grain yield and correlated traits of bread wheat lines: Implications for yield improvement. Saudi Journal of Biological Sciences28(10), 5714-5719. doi: 10.1016/j.sjbs.2021.06.006.##Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. doi: 10.2135/cropsci1984.0011183X002400050026x.##Zali, H., Hasanloo, T., Sofalian, O., Asghari, A., & Zeinalabedini, M. (2017). Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding, 8(20), 77-90. [In Persian]. doi: https://doi.org/20.1001.1.22286128.1395.8.20.7.4.##Zhang, P., Dreisigacker, S., Buerkert, A., Alkhanjari, S., Melchinger, A. E., & Warburton, M. L. (2006). Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genetic Resources & Crop Evolution, 53(7), 1351-1360. doi: 10.1007/s10722-005-4675-1.