Analysis of genetic diversity of barley (Hordeum vulgare L.) genotypes by microsatellite markers

Document Type : Research Paper

Authors

1 Former M.Sc. Student, Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran

2 Professor, Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran

3 Research Associate Professor, Dryland Agriculture Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran

Abstract

Introduction
Knowledge of the level of genetic diversity and its estimation in plant germplasms is the basis of many breeding programs. Due to high levels of polymorphism, high reproducibility, polyallelic nature, codominant scoring, and high genomic frequency, microsatellite (SSR) markers are used widely in investigating genetic diversity and determining the relationships between genotypes. This research aimed to study the genetic diversity of 40 barley genotypes in terms of SSR markers and to determine the markers with the highest discriminating ability.
Materials and methods
In this research, the genetic diversity of 39 barley cultivars and one wild barley genotype was investigated in terms of 57 SSR markers, of which 51 polymorphic markers with clear and acceptable amplification were selected for molecular evaluation of the genotypes. The banding pattern of markers was scored as one (presence of the band) and zero (absence of the band) and also, as the codominance state. Then, the efficiency of the markers was evaluated by the polymorphism information content, frequency of common alleles, number of alleles, observed heterozygosity, and gene diversity. In addition, barley genotypes were grouped by cluster analysis with the Minimum Evolution algorithm and the P-Distance coefficient.
Research findings
Totally, 200 alleles (with an average of 3.92 alleles per locus) were amplified. The average polymorphism information content and gene diversity for these markers were 0.48 and 0.54, respectively. The frequency of common alleles ranged from 0.25 to 0.92 with an average of 0.56, which belonged to the GBMS021 and GBM1275 markers, respectively. Also, the GBMS027 marker had the highest polymorphism information content, expected heterozygosity, and allele number. Cluster analysis assigned the genotypes into three groups. The first group had the highest number of genotypes from the temperate regions (either warm or cold) with spring growth habit. The second group consisted mainly of genotypes from the temperate and cold regions with spring and intermediate growth habits. The third group was mostly a mixture of genotypes from temperate and tropical regions with the intermediate and spring growth habit, and most foreign genotypes were also assigned to this group. However, cluster analysis based on SSR markers couldn’t fully separate the genotypes of different geographical regions, and with different growth habits.
Conclusion
In general, there was significant genetic diversity among the barley genotypes studied in terms of SSR markers, and the markers GBMS027, GBMS021, GBMS006, GBMS180, GBMS0160, GBM1272, and GBMS002 were identified as markers with the highest discriminating ability due to having the higher amount of polymorphic information content, expected heterozygosity, and allele number. This diversity can be utilized in the barley breeding programs.

Keywords

Main Subjects


Abebe, T. D., Abate, A., & Leon, J. (2023). Genetic diversity within landraces of barley (Hordeum vulgare L.) and its implications on germplasm collection and utilization. Genetic Resources & Crop Evolution, 70, 1985-1998. doi: 10.1007/s10722-023-01549-0.##Ali, M., Shaukat, F., Khan, W., Syed, A., Maqsood, J., Kamal, H., Ercisli, S., Balijagic, J., Ullah, R., Bari, A., Anwar, Z., Ijaz, A., Kashif, M., Khalid, M. N., Mustafa, H. S. B., & Zafar, M. M. (2023). Microsatellite-based diversity analysis and the development of core-set germplasm in Pakistani barley lines: Microsatellite-based diversity in Pakistani barley lines. Cellular & Molecular Biology, 69(10), 100-108. doi: 10.14715/cmb/2023.69.10.##Badr, A., Muller, K., Scafer-Pregl, R. El., Rabey, H., Effgen, S., Ibrahim, H. H., & Pozi, C. (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology & Evolution, 17(4), 499-510. doi: 10.1093/oxfordjournals.molbev.a026330.##Dido, A. A., Krishna, M. S. R., Assefa, E., Degefu, D. T., Singh, B. J. K., & Tesfaye, K. (2022). Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers. Journal of Genetics, 101, 9. doi: 10.1007/s12041-021-01346-7.##FAO. (2022). FAOSTAT. Food and Agriculture Organization. http://faostat.fao.org.##Ferreira, J. R., Pereira, J. F., Turchetto, C., Minella, E., Consoli, L., & Delatorre, C. A. (2016). Assessment of genetic diversity in Brazilian barley using SSR markers. Genetics & Molecular Biology, 39(1), 86-96. doi: 10.1590/1678-4685-GMB-2015-0148.##Ghomi, K., Rabiei, B., Sabouri, H., & Gholamalipour Alamdari, E. (2021). Association analysis, genetic diversity and population structure of barley (Hordeum vulgare L.) under heat stress conditions using SSR and ISSR markers linked to primary and secondary metabolites. Molecular Biology Reports, 48(10), 6673-6694. doi: 10.1007/s11033-021-06652-y.##Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113, 163-185. doi: 10.1023/A:1003910819967.##Heidari, A., Mohammadi, S. A., Moghaddam, M., Shakiba, M. R., Ghasemi-Golezani, K., & Yousefi, A. (2011). Analysis of genetic diversity in barley genotypes using SSR and EST-SSR markers. Iranian Journal of Crop Sciences, 13, 146-156. [In Persian]. doi: 10.5539/jas.v5n7p12.##Jan, S., Khan, M. N., Jan, S., Zaffar, A., Rashid, R., Khan, M. A., Sheikh, F. A., Ashraf Bhat, M., & Mir, R. R. (2022). Trait phenotyping and molecular marker characterization of barley (Hordeum vulgare L.) germplasm from Western Himalayas. Genetic Resources & Crop Evolution, 69, 661-676. doi: 10.1007/s10722-021-01251z.##Khalil, M. R., Almahasneh, H. A., & Lawand, S. Y. (2020). Detection of genetic polymorphism in seven barley (Hordeum vulgare L.) varieties using SSR. Basrah Journal of Agricultural Sciences, 33(2), 115-124. doi: 10.37077/25200860.2020.33.2.10.##Kumar, P., Banjarey, P., Malik, R., Tikle, A. N., & Verma, R. P. S. (2020). Population structure and diversity assessment of barley (Hordeum vulgare L.) introduction from ICARDA. Journal of Genetics, 99, 70. doi: 10.1007/s12041-020-01226-6.##Lahoot, F., Zeinolabedini, M., Karimi, J., Shahbazi, M., & Sadeghzadeh, B. (2016). Assessment of genetic diversity of Iranian and non-Iranian barely genotypes (Hordeum vulgare L.) using SSR markers. Crop Biotechnology, 6(1), 25-35. [In Persian]. dor: 20.1001.1.22520783.1395.6.15.3.9.##Liu, K., & Muse, S. V. (2005). PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 21, 2128-2129. doi: 10.1093/bioinformatics/bti282.##Marcussen, T., Sandve, S. R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K. S., Wulff, B. B. H., Steuernagel, B., Mayer, K. F., & Olsen, O. A. (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092. doi: 10.1126/science.1250092.##Mariey, S. A., El-Mansoury, M. A., Agwa, A. M., & Nashed, M. E. (2020). Genetic diversity of Egyptian barley cultivars for water stress using SSR markers. International Journal of Environment, 9(1), 14-25. doi: 10.36632/ije/2020.9.1.2.##Marzougui, S., Kharrat, M., & Ben Younes, M. (2020). Assessment of genetic diversity and population structure of Tunisian barley accessions (Hordeum vulgare L.) using SSR markers. Acta Agrobotanica, 73(4), 7343. doi: 10.5586/AA.7343.##Mayer, K. F. X., Martis, M., Hedley, P. E., Simkova, H., Liu, H., & Morris, J. A. (2012). Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell, 23(4), 1249-1263. doi: 10.1105/tpc.110.082537.##Mohammadi, S. A., Abdollahi Sisi, N., & Sadeghzadeh, B. (2020). The influence of breeding history, origin and growth type on population structure of barley as revealed by SSR markers. Scientific Reports, 10, 19165. doi: 10.1038/s41598-020-75339-4.##Namavar, A., Tahmasebi, Z., Erfani Moghaddam, J., Fatehi, F., Yousefi, Z., & Zarei, B. (2016). Investigating genetic diversity of a sample of wild barely germplasm using SSR molecular marker. Cereal Research, 6(2), 201-214. [In Persian]. dor: 20.1001.1.22520163.1395.6.2.6.6.##Piacentini, K. C., Savi, G. D., Pereira, M. E. V., & Scussel, V. M. (2015). Fungi and natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chemistry, 187, 204-209. doi: 10.1016/j.foodchem.2015.04.101.##Saghai-Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q., & Allard, R. W. (1994). Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences, 91(12), 5466-5470. doi: 10.1073/pnas.91.12.5466.##Schulman, A. H. (2007). Molecular markers to assess genetic diversity. Euphytica, 58, 313-321. doi: 10.1007/s10681-006-9282-5.##Shoorvazdi, A., Mohammadi, S. A., Noroozi, M., & Sadeghzadeh, B. (2014). Molecular analysis of genetic diversity and relationships of barley landraces based on microsatellite markers. Journal of Plant Genetic Research, 1(1), 51-64. [In Persian]. doi: 10.29252/pgr.1.1.51.##Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2011). MEGA 5: Molecular evolutionary genetics analysis (MEGA) software, version 5.0. Molecular Biology & Evolution, 24, 1596-1599. doi: 10.1093/molbev/msr121.##Wang, L., Jiao, S., Jiang, Y., Yan, H., Su, D., Sun, G., Yun, X., & Sun, L. (2013). Genetic diversity in parent lines of sweets sorghum based on agronomical traits and SSR markers. Field Crops Research, 149, 11-19. doi: 10.21276/sjavs.2018.5.10.2.