Ali, W., Mao, K., Zhang, H., Junaid, M., Xu, N., Rasool, A., Feng, X., & Yang, Z. (2020). Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries.
Journal of Hazardous Materials,
397, 122720. doi:
10.1016/j.jhazmat.2020.122720.##Azimi, N., Ravash, R., & Zinati, Z. (2024). Microarray meta-analysis and supervised machine learning to explore drought-tolerance-associated genes in wheat (
Triticum aestivum).
Genetic Resources & Crop Evolution,
71, 3815-3831. doi:
10.1007/s10722-024-01893-9.##Asres, L. A. (2023). Alternative techniques of irrigation water management for improving crop water productivity.
Reviews in Agricultural Science,
11, 36-53. doi:
10.7831/ras.11.0_36.##Baldrich, P., & San Segundo, B. (2016). MicroRNAs in rice innate immunity.
Rice,
9(1), 6. doi:
10.1186/s12284-016-0078-5.##Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., & Alotaibi, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities.
Scientific Reports,
10(1), 16975. doi: 10.1038/s41598-020-73489-z.##Chandra, S., & Roychoudhury, A. (2020). Penconazole, paclobutrazol, and triacontanol in overcoming environmental stress in plants. In: Roychoudhury, A., & Tripathi, D. K. (Eds.). Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives. pp. 510-534. doi: 10.1002/9781119552154.ch26.##Das, B., Sen, A., Roy, S., Banerjee, O., & Bhattacharya, S. (2021). miRNAs: Tiny super-soldiers shaping the life of rice plants for facing “stress”-ful times.
Plant Gene,
26, 100281. doi:
10.1016/j.plgene.2021.100281.##Delarampoor, M. A., Fahmideh, L., & Fooladvand, Z. (2019). Effect of drought stress on NAC gene expression in some bread wheat cultivars of Sistan region.
Environmental Stresses in Crop Sciences,
12(3), 649-662. [In Persian]. doi:
10.22077/escs.2019.1484.1361.##El-Esawi, M. A., & Alayafi, A. A. (2019). Overexpression of
StDREB2 transcription factor enhances drought stress tolerance in cotton (
Gossypium barbadense L.).
Genes (Basel),
10(2), 142. doi: 10.3390/genes10020142.##Gao, Z., Ma, C., Zheng, C., Yao, Y., & Du, Y. (2022). Advances in the regulation of plant salt-stress tolerance by miRNA.
Molecular Biology Reports,
49(6), 5041-5055. doi: 10.1007/s11033-022-07179-6.##Gill, S. S., Chahar, P., Macovei, A., Yadav, S., Ansari, A. A., Tuteja, N., & Gill, R. (2021). Comparative genomic analysis reveals evolutionary and structural attributes of MCM gene family in
Arabidopsis thaliana and
Oryza sativa.
Journal of Biotechnology,
327, 117-132. doi: 10.1016/j.jbiotec.2020.12.010.##Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., Chao, D.-Y., Li, J., Wang, P. -Y., Qin, F., Li, J., Ding, Y., Shi, Y., Wang, Y., Yang, Y., Guo, Y., & Zhu, J. -K. (2020). Plant abiotic stress response and nutrient use efficiency.
Science China Life Sciences,
63, 635-674. doi: 10.1007/s11427-020-1683-x.##Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis.
Nature Reviews Molecular Cell Biology,
15(8), 509-524. doi: 10.1038/nrm3838.##Huang, Q., Wang, Y., Li, B., Chang, J., Chen, M., Li, K., Yang, G., & He, G. (2015).
TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic
Arabidopsis.
BMC Plant Biology,
15, 268. doi: 10.1186/s12870-015-0644-9.##Jia, X., Zeng, Z., Lyu, Y., & Zhao, S. (2022). Drought-responsive NAC transcription factor
RcNAC72 is recognized by
RcABF4, interacts with
RcDREB2A to enhance drought tolerance in
Arabidopsis.
International Journal of Molecular Sciences,
23(3), 1755. doi: 10.3390/ijms23031755.##Kamrava, S., Babaeian Jelodar, N. A., Bagheri, N. A., & Nazarian-Firouzabadi, F. (2024). Investigating the expression pattern of SAPK1 gene from protein kinase gene group (SNF1-Type) in rice plants under salt stress.
Journal of Crop Production,
17(1), 169-186. [In Persian]. doi: 10.22069/ejcp.2024.21425.2582.##Khorrami Moghadam, M., Khoshhal Sarmast, M., Ghasemnajad, A., & Savchenko, T. (2024). Mitigation of root and shoot proline content in response to jasmonic and salicylic acid in Rosa damacena subjected to short drought stress.
Journal of Plant Production Research,
30(4), 171-190. [In Persian]. doi: 10.22069/JOPP.2024.21547.3063.##Kohli, S. K., Handa, N., Sharma, A., Gautam, V., Arora, S., Bhardwaj, R., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2018). Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in
Brassica juncea L. seedlings under Pb stress.
Environmental Science & Pollution Research,
25, 15159-15173. doi: 10.1007/s11356-018-1742-7.##Li, C., Nong, W., Zhao, S., Lin, X., Xie, Y., Cheung, M.-Y., Xiao, Z., Wong, A. Y., Chan, T. F., & Hui, J. H. (2022). Differential microRNA expression, microRNA arm switching, and microRNA:long noncoding RNA interaction in response to salinity stress in soybean.
BMC Genomics,
23(1), 65. doi:
10.1186/s12864-022-08308-y.##Li, M., & Yu, B. (2021). Recent advances in the regulation of plant miRNA biogenesis.
RNA Biology,
18(12), 2087-2096. doi:
10.1080/15476286.2021.1899491.##Li, C. Y., Cai, J.-H., Tsai, J. J., & Wang, C. C. (2020). Identification of hub genes associated with development of head and neck squamous cell carcinoma by integrated bioinformatics analysis.
Frontiers in Oncology,
10, 681. doi: 10.3389/fonc.2020.00681.##Ma, Y., Tang, M., Wang, M., Yu, Y., & Ruan, B. (2024). Advances in understanding drought stress responses in rice: Molecular mechanisms of ABA signaling and breeding prospects.
Genes,
15(12), 1529. doi: 10.3390/genes15121529.##Mahmoudi, A., Aalami, A., Hasani Komleh, H., Esfehani, M., & Shirzadian, R. (2018). Assessment of
NAC2,
MYB and
CBF14 genes expression in susceptible and resistant
Aegilops genotypes to salinity.
Iranian Journal of Rangelands & Forests Plant Breeding & Genetic Research,
26(2), 244-253. [In Persian]. doi: 10.22092/ijrfpbgr.2018.117963.##Noman, A., & Aqeel, M. (2017). miRNA-based heavy metal homeostasis and plant growth.
Environmental Science & Pollution Research,
24, 10068-10082. doi: 10.1007/s11356-017-8593-5.##Pasandideh Arjmand, M., Farrokhi, N., Samizadeh Lahiji, H., & Mohsenzadeh Golfazani, M. (2024). Deciphering the regulatory network of some key drought-responsive genes and microRNAs in canola.
Journal of Genetic Resources,
10(1), 29-39. doi: 10.22080/jgr.2024.26535.1380.##Patel, P., Yadav, K., Ganapathi, T., & Penna, S. (2019). Plant miRNAome: Cross talk in abiotic stressful times. In: Rajpal, V. R., Sehgal, D., Kumar, A., & Raina, S. N. (Eds.). Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Springer Cham. pp. 25-52. doi: 10.1007/978-3-319-91956-0_2.##Poursharifi, M. S., & Zarei, M. A. (2016). Alpha-glucosidase inhibitory activity in hexane extracts of some plants from Kurdistan province.
Journal of Medicinal Plants,
15(58), 120-133. dor:
20.1001.1.2717204.2016.15.58.3.1.##Sasi, J. M., VijayaKumar, C., Kukreja, B., Budhwar, R., Shukla, R. N., Agarwal, M., & Katiyar-Agarwal, S. (2022). Integrated transcriptomics and miRNAomics provide insights into the complex multi-tiered regulatory networks associated with coleoptile senescence in rice.
Frontiers in Plant Science,
13, 985402. doi: 10.3389/fpls.2022.985402.##Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects.
Plants,
10(2), 259. doi: 10.3390/plants10020259.##Shojaee, S., Ravash, R., Shiran, B., & Ebrahimie, E. (2020). Identification of a number of genes with different expression patterns between resistant and susceptible wheat cultivars in response to drought stress by using meta-analysis method.
Agricultural Biotechnology Journal,
12(3), 157-176. [In Persian]. doi: 10.22103/JAB.2020.15218.1194.##Shojaee, S., Ravash, R., Shiran, B., & Ebrahimie, E. (2022). Meta-analysis highlights the key drought responsive genes in genes:
PEPC and
TaSAG7 are hubs response networks.
Journal of Genetic Engineering & Biotechnology,
20(1), 127. doi: 10.1186/s43141-022-00395-4.##Silva Filho, J. L. B. D., Pestana, R. K. N., Silva Júnior, W. J. D., Coelho Filho, M. A., Ferreira, C. F., de Oliveira, E. J., & Kido, E. A. (2024). Exploiting DNA methylation in cassava under water deficit for crop improvement.
PLoS One,
19(2), e0296254. doi: 10.1371/journal.pone.0296254.##Tuteja, N., Tran, N. Q., Dang, H. Q., & Tuteja, R. (2011). Plant MCM proteins: Role in DNA replication and beyond.
Plant Molecular Biology,
77, 537-545. doi: 10.1007/s11103-011-9836-3.##Asefpour Vakilian, K. (2019). Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs.
Plant Physiology & Biochemistry,
145, 195-204. doi: 10.1016/j.plaphy.2019.10.042.##Yin, J., Liu, Y., Lu, L., Zhang, J., Chen, S., & Wang, B. (2022). Comparison of tolerant and susceptible cultivars revealed the roles of circular RNAs in rice responding to salt stress.
Plant Growth Regulation,
96, 243-254. doi: 10.1007/s10725-021-00772-y.##Yousfi, S., Márquez, A. J., Betti, M., Araus, J. L., & Serret, M. D. (2016). Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes.
Journal of Integrative Plant Biology,
58(1), 48-66. doi: 10.1111/jipb.12359.##Zhang, B., & Chen, X. (2021). Secrets of the
MIR172 family in plant development and flowering unveiled.
PLOS Biology,
19(2), e3001099. doi: 10.1371/journal.pbio.3001099.##Zhang, C., Yang, H., Wu, W., & Li, W. (2017). Effect of drought stress on physiological changes and leaf surface morphology in the blackberry.
Brazilian Journal of Botany,
40, 625-634. doi: 10.1007/s40415-017-0377-0.##Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022a). Roles of microRNAs in abiotic stress response and characteristics regulation of plant.
Frontiers in Plant Science,
13, 919243. doi: 10.3389/fpls.2022.919243.##Zhang, X., Li, W., Liu, Y., Li, Y., Li, Y., Yang, W., Chen, X., Pi, L., & Yang, H. (2022b). Replication protein
RPA2A regulates floral transition by cooperating with
PRC2 in
Arabidopsis.
New Phytologist,
235(6), 2439-2453. doi: 10.1111/nph.18279.##Zhang, Y., Chen, Q., Zhu, G., Zhang, D., & Liang, W. (2022c). Chromatin-remodeling factor
CHR721 with non-canonical PIP-box interacts with
OsPCNA in Rice.
BMC Plant Biology,
22(1), 164. doi: 10.1186/s12870-022-03532-w.