تخمین ارزش اصلاحی صفات زراعی- زیستی ذرت (Zea mays L.) تحت شرایط نرمال و تنش شوری بر اساس نشانگر چند شکلی تک نوکلئوتیدی (SNP)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

4 استاد، گروه بیولوژی عمومی، دانشگاه فدرال ویسوز، برزیل

5 دانش‌آموخته دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

چکیده

اولین گام در برنامه‌های به­نژادی ذرت، استفاده از تنوع ژنتیکی موجود در بین جمعیت‌ها، ارقام و ژنوتیپ­های موجود است. نشانگرهای مولکولی امکان برآورد ارزش اصلاحی صفات زراعی- زیستی ژنوتیپ­ها را از طریق بهترین پیش­بینی نااریب خطی (BLUP) فراهم می­کنند. در این پژوهش، ارزش اصلاحی 73 لاین با تنوع فنوتیپی بالا برای ده صفت وزن صد دانه، روز تا رسیدگی، قطر بلال با دانه، طول بلال، طول برگ پرچم، تعداد برگ، وزن برگ، ارتفاع بوته، قطر ساقه و عملکرد دانه تحت شرایط نرمال و تنش شوری با استفاده از BLUP برآورد شد. با در نظر گرفتن مجموع رتبه ارزش­های اصلاحی تمامی صفات مورد مطالعه تحت شرایط نرمال، ژنوتیپ­های P13L3، Line1، Line4 و Line17 برترین ژنوتیپ­ها بودند. تحت شرایط نرمال، ژنوتیپ P3L2 برای صفات روز تا رسیدگی و ارتفاع بوته، ژنوتیپ Line6 برای صفات قطر بلال با دانه و عملکرد دانه و ژنوتیپ Line19 برای صفات طول بلال، ارتفاع بوته، عملکرد دانه و قطر ساقه، ارزش­های اصلاحی مثبت و بالا داشتند و در مقابل تحت شرایط تنش شوری، ژنوتیپ Line2 برای صفات وزن صد دانه، قطر بلال با دانه و طول بلال و ژنوتیپ Line16 برای صفات روز تا رسیدگی، وزن برگ و ارتفاع بوته، دارای ارزش اصلاحی مثبت و بالا بودند. از آنجایی که این ژنوتیپ­ها بهتر می­توانند ویژگی­های خود را به نتاج منتقل کنند، بنابراین به­عنوان والدین مناسب برای اصلاح این صفات در برنامه­های اصلاحی مبتنی بر تلاقی پیشنهاد می­­شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating breeding value of agrobiologic traits in maize (Zea mays L.) under normal and salinity stress conditions based on single nucleotide polymorphism (SNP) marker

نویسندگان [English]

  • Gohar Afrouz 1
  • Reza Darvishzadeh 2
  • Hadi Alipour 3
  • José Marcelo Soriano Viana 4
  • Mitra Razi 5
1 Ph. D. Student, Dept. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
2 Prof., Dept. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
3 Assist. Prof., Dept. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
4 Prof., Dept. of General Biology, Federal University of Viçosa, Brazil
5 Gradute Ph. D., Dept. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
چکیده [English]

The first step in maize breeding programs is to use the genetic diversity existing between populations, cultivars and genotypes. Molecular markers provide the possibility to estimate the breeding value of agrobiological traits of genotytpes using best liner unbiased prediction (BLUP). In this study, the breeding value for ten traits including weight of 100 grains, days to maturity, diameter of ear together with grain, ear length, leaf weight, leaf number, plant height, stem diameter, leaf length and yield were predicted in 73 lines with high phenotypic diversity under normal and stress conditions using the best liner unbiased prediction (BLUP) procedure. Considering the sum of ranks of the breeding values ​​of all the studied traits, P13L3, Line1, Line4 and Line17 were the best genotypes. Under normal conditions, P3L2 genotype for days to maturity and plant height, Line6 genotype for diameter of ear together with grain and yield and Line19 genotype for ear length, plant height, yield and stem diameter showed high and positive breeding values. Under salt stress conditions, Line2 genotype for weight of 100 grains, diameter of ear together with grain, ear length and Line16 genotype for days to maturity, leaf weight and plant height showed high and positive breeding values. As genotypes with high and positive breeding values can better transfer their characteristics to their progenies, so they can be introduced as a suitable parent for breeding of these traits in breeding programs.

کلیدواژه‌ها [English]

  • Additive effect
  • Best liner unbiased prediction (BLUP)
  • Mixed linear model
  • Yield and yield components
Ashraf, M. 2001. Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environmental and Experimental Botany 45 (2): 155-163.##Atkinson, N. J. and Urwin, P. E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63 (10): 3523-3543.##Bauer, A. M., Reetz, T. C. and Léon, J. 2006. Estimation of breeding values of inbred lines using best linear unbiased prediction (BLUP) and genetic similarities. Crop Science 46 (6): 2685-2691.##Behera, L.M. and Hembram, P. 2021. Advances on plant salinity stress responses in the post-genomic era: A review. Journal of Crop Science and Biotechnology 24: 117-126. https://doi.org/10.1007/s12892-020-00072-3.##Bernardo, R. and Yu, J. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Science 47 (3): 1082-1090.##Blanco, F. F., Folegatti, M. V., Gheyi, H. R. and Fernandes, P. D. 2008. Growth and yield of corn irrigated with saline water. Science Agriculture 65 (6): 574-580.##Calus, M. P. 2010. Genomic breeding value prediction: methods and procedures. Animal 4 (2): 157-164.##de Souza, V. A., Byrne, D. H. and Taylor, J. F. 2000. Predicted breeding values for nine plant and fruit characteristics of 28 peach genotypes. Journal of the American Society for Horticultural Science 125 (4): 460-465.##Emdad M. R. and Fardad H. 2000. Effect of salt and water stress on corn yield production. Iranian Journal of Agriculture Science 3 (31): 641-654.##Fageria, N. K., Baligar, V. C. and Jones, C. A. 2010. Growth and mineral nutrition of field crops. CRC Press.##Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to quantitative genetics. 1996. Harlow, Essex, UK: Longmans Green, 3.##Fehr, W. 1991. Principles of cultivar development: Theory and technique. Macmillian Publishing Company.##Foulley, J. L. 2015. Mixed model methodology. Part I: Linear mixed models. Technical Report, e-print: doi: 10.13140/2.1.3072.0320.##Fresnedo-Ramirez, J., Frett, T. J., Sandefur, P. J., Salgado, A. A., Clark, J. R., Gasic, K., Peace, C., Anderson, N., Hartmann, T. P., Byrne, D. H., Bink, M., Van de Weg, E., Crisosto, C. H. and Gradziel, T. M. 2016. QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genetics and Genomes 12 (2): 1-25. doi: 10.1007/s11295-016-0985-z.##Gaikpa, D. S., Kessel, B., Presterl, T., Ouzunova, M., Galiano-Carneiro, A. L., Mayer, M., Melchinger, A. E., Schön, C. C. and Miedaner, T. 2021. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Theoretical and Applied Genetics 134 (3): 793-805.##Gianola, D. and Van Kaam, J. B. 2008. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178 (4): 2289-2303.##Guo, G., Lund, M. S., Zhang, Y. and Su, G. 2010. Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables. Journal of Animal Breeding and Genetics 127 (6): 423-432. ‏##Habier, D., Tetens, J., Seefried, F. R., Lichtner, P. and Thaller, G. 2010. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution 42 (1): 1-12.##Hardner, C. M., Bally, I. S. E. and Wright, C. L. 2012. Prediction of breeding values for average fruit weight in mango using a multivariate individual mixed model. Euphytica 186: 463- 477.##Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choi, S., Johal, G. S. and Schulz, B. 2011. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America 108:19814-19819.##Henderson, C. R. 1990. Statistical methods in animal improvement: historical overview. In: Gianola, D. and Hammond, K. (Eds.), Advances in statistical methods for genetic improvement of livestock . Springer, Berlin, Heidelberg. pp: 2-14.##Hirsch, C. N., Foerster, J. M., Johnson, J. M., Sekhon, R. S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., de Leon, N., Kaeppler, S. M. and Buell, C. R. 2014. Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26: 121-35.##Hu, J. M., Wang, X. Q., Zhang, G. X., Jiang, P., Chen, W. Y., Hao, Y. C., Ma, X., Xu, S. S., Jia, J., Kong, L. R. and Wang, H. W. 2020. QTL mapping for yield-related traits in wheat based on four RIL populations. Theoretical and Applied Genetics 133: 917-933.##Imai, A., Kuniga, T., Yoshioka, T., Nonaka, K., Mitani, N., Fukamachi, H., Hiehata, N., Yamamoto, M. and Hayashi, T. 2016. Evaluation of the best linear unbiased prediction method for breeding values of fruit-quality traits in citrus. Tree Genetics and Genomes 12 (6): 1-11. doi: 10.1007/s11295-016-1078-8.##Isik, F., Holland, J. and Maltecca, C. 2017. Genetic data analysis for plant and animal breeding. Springer. New York.##Jannink, J. L., Lorenz, A. J. and Iwata, H. 2010. Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics 9 (2): 166-177.##Lawit, S. J., Wych, H. M., Xu, D., Kundu, S. and Tomes, D. T. 2010. Maize della proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant and Cell Physiology 51 (11): 1854-68.##Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., Lin, H. Y., Li, C., Xu, D., Wu, L., Wang, C., Wu, W., Xia, J., Han, X., Lu, S., Lai, J., Song, W., Schnable, P. S. and Tian, F. 2018. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytologist doi.org/10.1111/nph.15512.##Liu, K., Xu, H., Liu, G., Guan, P., Zhou, X., Peng, H., Yao, Y., Ni, Z., Sun, Q. and Du, J. 2018. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 131: 839-849.##Ma, J., Tu, Y., Zhu, J., Luo, W., Liu, H., Li, C., Li, S., Liu, J., Ding, P., Habib, A., Mu, Y., Tang, H., Liu, Y., Jiang, Q., Chen, G., Wang, J., Li, W., Pu, Z., Zheng, Y., Wei, Y., Kang, H., Chen, G. and Lan, X. 2020. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics 133: 297-315.##Maas, E. V., Hoffman, G. J., Chaba, G. D., Poss, J. A. and Shannon, M. C. 1983. Salt sensitivity of corn at various growth stages. Irrigation Science 4 (1): 45-57.##Martinez-Garcia, P. J., Famula, R., Leslie, C. A., Mcgranahan, G. H., Famula, T. R. and Neale, D. B. 2017. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genetics and Genomes13 (5): 1-12. doi: 10.1007/s11295-017-1187-z.##Meyer, K. 2007. WOMBAT: A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 8 (11): 815-821.##Mazaheri, M., Heckwolf, M., Vaillancourt, B., Gage, J. L., Burdo, B., Heckwolf, S., Barry, K., Lipzen, A., Ribeiro, C. B., Kono, T., Kaeppler, H. F., Spalding, E. P., Hirsch, C. N., Buell, C. R., de Leon, N. and Kaeppler, S. M. 2019. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology 19: 45.##Mirmohammadi-Meibodi, A. and Gharayazi, B. 2002. Physiological aspects and breedingfor salinity stress in plants. Isfahan University of Technology Publication Center,  Isfahan, Iran. (In Persian).##Molazem, D. 2018. Investigation of yield, yield components and indices of salt tension tolerance in maize cultivars. Crop Physiology Journal 10 (39): 93-111.##Multani, D. S ., Briggs, S. P., Chamberlin, M. A., Blakeslee, J. J., Murphy, A. S. and Johal, G. S. 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302: 81-84.##Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.##Najafi, N. and Sarhangzadeh, E. 2012. Effect of NaCl salinity and soil waterlogging on growth characteristics of forage corn in greenhouse conditions. Journal of Soil and Plant Interactions 3 (2): 1-15. (In Persian with English Abstract).##Pal, A. K. and Prodham, H. S. 1994. Combining ability analysis of grain yield and oil content along with some other attributes in maize (Zea mays L.). Indian Journal of Genetics 54: 376-380.##Patterson, H. D. and Thompson, R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58 (3): 545-554.##Peiffer, J. A., Romay, M. C., Gore, M. A., Flint-Garcia, S. A., Zhang, Z., Millard, M. J., Gardner, C. A. C., McMullen, M. D., Holland, J. B., Bradbury, P. J. and Buckler, E. S. 2014. The genetic architecture of maize height. Genetics 196: 1337-56.##Piepho, H. P. 2009. Ridge regression and extensions for genomewide selection in maize. Crop Science 49 (4): 1165-1176.##Piepho, H. P., Möhring, J., Melchinger, A. E. and Büchse, A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161 (1-2): 209-228.##Quintal, S. S. R., Viana, A. P., Campos, B., Vivas, M. and Amaral Junior, A. T. 2017. Selection via mixed models in segregating guava families based on yield and quality traits. Revista Brasileira de Fruticultura 39 (2): doi.org/10.1590/0100-29452017866.##Ramos, H. C. C., Pereira, M. G., Viana, A. P., da Luz, L. N., Cardoso, D. L. and Ferreguetti, G. A. 2014. Combined selection in backcross population of papaya (Carica papaya L.) by the mixed model methodology. American Journal of Plant Sciences 5 (20): 2973.##Razi, M., Darvishzadeh, R., Doulati Baneh, H., Amiri, M. E. and Martinez-Gomez, P. 2020. Estimating breeding value of pomological traits in grape cultivars based on REMAP molecular markers. Journal of Plant Productions (In Press).‏ doi: 10.22055/PPD.2020.34003.1925.##Roudbari, Z., Mohammadi-Nejad, G. and Shahsavand-Hassani, H. 2017. Field screening of primary and secondary tritipyrum genotypes using selection indices based on blup under saline and normal conditions. Crop Science 57 (3): 1495-1503.##Ruanjaichon, V., Khammona, K., Thunnom, B., Suriharn, K., Kerdsri, C., Aesomnuk, W., Yongsuwan, A., Chaomueang, N., Thammapichai, P., Arikit, S. and Wanchana, S., 2021. Identification of gene associated with sweetness in corn (Zea mays L.) by genome-wide association study (GWAS) and development of a functional SNP marker for predicting sweet corn. Plants 10 (6): 1239.##Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. and Allard, R. W. 1984. Ribosomal DNA spacer-length polymorphisms in barly mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences of the United States of America 81: 8014-8018.##Sajedi, N. and Ardekani, A. 2008. Effect of nitrogen fertilizer, iron on the physiological indices forage maize in central provinces. Iranian Journal of Field Crops Research 6 (1): 99-110. (In Persian with English Abstract).##Stuber, C. W., Moll, R. H. and Hanson, W. D. 1966. Genetic variance and interrelationships of six traits in a hybrid population of Zea mays L. Crop Science 6: 455-458.##Teng, F., Zhai, L., Liu, R., Bai, W., Wang, L., Huo, D., Tao. Y., Zheng, Y. and Zhang, Z. 2013. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. The Plant Journal 73: 405-16.##Tan, W. W., Wang, Y., Li, Y. X., Liu, C., Liu, Z. Z., Peng, B., Wang, D., Zhang, Y., Sun, B. C., Shi, Y. S., Song, Y. C., Yang, D. G., Wang, T. Y. and Li, Y. 2011. QTL analysis of ear traits in maize across multiple environments. Scientia Agricultura Sinica 44: 233-244.##Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy, L., Roorkiwal, M. and Varshney, R. K. 2014. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PloS One 9 (5): e96758.##Unterseer, S., Bauer, E., Haberer, G., Seidel, M., Knaak, C., Ouzunova, M., Meitinger, T., Strom, T. M., Fries, R., Pausch, H. and Bertani, C. 2014. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics 15 (1): 1-15.##Villumsen, T. M. and Janss, L. 2009. Bayesian genomic selection: the effect of haplotype length and priors. BMC Proceedings 3 (Suppl 1), S11.##Winkler, R. G. and Helentjaris, T. 1995. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7: 1307-17.##Xiao, Y., Tong, H., Yang, X., Xu, S., Pan, Q., Qiao, F.,  Raihan, M. S., Luo, Y., Liu, H., Zhang, X., Yang, N., Wang, X., Deng, M., Jin, M., Zhao, L., Luo, X., Zhou, Y., Li, X., Liu, J., Zhan, W., Liu, N., Wang, H., Chen, G., Cai, Y., Xu, G., Wang, W., Zheng, D. and Yan, J. 2016. Genomewide dissection of the maize ear genetic architecture using multiple populations. New Phytologist 210: 1095-1106.##Yang, R.-C. 2010. Towards understanding and use of mixed-model analysis of agricultural experiments. Canadian Journal of Plant Science 90: 605-627.##Zhao, Y., Li, Z., Liu, G., Jiang, Y., Maurer, H. P., Würschum, T., Mock, H. P., Matros, A., Ebmeyer, E. and Schachschneider, R. 2015. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States of America112(51): 15624-15629.##Zhou, G., Zhu, Q., Yang, G., Huang, J., Cheng, S., Yue, B. and Zhang, Z. 2015. qEL7.2 is a pleiotropic QTL for kernel number per row, ear length and ear weight in maize (Zea mays L.). Euphytica 203: 429-436.##