پایداری عملکرد ژنوتیپ‌های گندم نان با استفاده از تجزیه AMMI و GGE بای‌پلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

2 دانشیار، گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

3 دانشیار پژوهش، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

مقدمه: تولید ارقام دارای عملکرد بالا و پایدار مهم‌ترین هدف برنامه‌های اصلاحی محصولات زراعی از جمله گندم می‌باشد. عملکرد نهایی هر محصول به وسیله پتانسیل ژنوتیپ (G)، اثر محیط (E) و اثر متقابل ژنوتیپ × محیط (GE) تعیین می‌شود. روش‌های متعددی برای مطالعه اثر متقابل ژنوتیپ × محیط و تعیین ژنوتیپ‌های پایدار ارائه شده است که به­طور کلی می­توان آنها را به دو دسته اصلی تک‌متغیره و چندمتغیره تقسیم کرد. روش‌های تک‌متغیره تصویر کاملی از ماهیت پیچیده و چندبعدی اثر متقابل GE ارائه نمی‌کنند، از این­رو استفاده از روش‌های چندمتغیره برای رفع این مشکل پیشنهاد شده است. در بین روش­های چندمتغیره، دو روش AMMI و GGE-Biplot از اهمیت بیش­تری برخوردار هستند. هدف از این آزمایش، بررسی اثر متقابل ژنوتیپ × محیط برای عملکرد دانه 20 ژنوتیپ گندم و شناسایی ژنوتیپ­های پایدار و پر محصول بود.
مواد و روش­ ها: مواد گیاهی این آزمایش، 20 ژنوتیپ گندم نان شامل 18 لاین گندم آبی و دو رقم شاهد رخشان و بهاران بود که به­منظور بررسی پایداری عملکرد دانه، در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در پنج ایستگاه منطقه معتدل کشور (کرج، کرمانشاه، زرقان، بروجرد و مشهد) طی دو سال زراعی 1399-1398 مورد ارزیابی قرار گرفتند. برای بررسی اثر متقابل ژنوتیپ × محیط و ارزیابی پایداری ژنوتیپ­ها، از دو روش چندمتغیره AMMI و GGE-Biplot استفاده شد. از نرم‌افزار R برای تجزیه داده‌های آزمایش به روش AMMI و رسم نمودار‌های مربوطه و از نرم‌افزار Genstat برای تجزیه داده‌ها به روش گرافیکی GGEبای‌پلات استفاده شد.
یافته­ های تحقیق: نتایج تجزیه واریانس مرکب داده‌ها نشان داد اثر متقابل ژنوتیپ × سال و ژنوتیپ × سال × مکان در سطح احتمال یک درصد معنی‌دار بودند. بر اساس نتایج تجزیه AMMI اثر محیط، ژنوتیپ و اثرمتقابل ژنوتیپ × محیط معنی‌دار بودند. بر اساس دو مدل ,AMMI1  AMMI2 ، پارامتر ارزش پایداری AMMI (ASV) و شاخص انتخاب پایداری (GSI) ژنوتیپ 12 با عملکرد 27/8 تن در هکتار به عنوان بهترین ژنوتیپ تعیین شد. بررسی چند ضلعی GGE بای‌پلات منجر به شناسایی سه ابرمحیط شد که در بین این محیط‌ها، محیط بروجرد بیشترین قدرت نمایندگی و تمایزکنندگی را در بین محیط‌های مختلف داشت. ژنوتیپ‌های شماره 12 و 9 علاوه‌بر داشتن عملکرد بالا از پایداری عملکرد بالاتری برخوردار بودند. ژنوتیپ­های شماره 12 و 9 نزدیکترین ژنوتیپ‌ها به ژنوتیپ ایده‌آل (ژنوتیپ مطلوب و پایدار) بودند و ژنوتیپ‌های 5، 7 و 18 بعد از آن در رتبه‌های بعدی قرار گرفتند. بر اساس نتایج حاصل از هر دو روش ژنوتیپ 12 به عنوان پایدار­ترین ژنوتیپ شناسایی شد.
نتیجه ­گیری: نتایج AMMI، شاخص پایداری امی (ASV) و شاخص پایداری ژنوتیپ (GSI) در مقایسه با نتایج GGEبای‌پلات نشان داد تمامی این شاخص‌ها از پتانسیل خوبی برای ارزیابی پایداری عملکرد ژنوتیپ‌ها برخوردار هستند، با این وجود نتایج GGEبای‌پلات در بررسی سازگاری و پایداری عملکرد ژنوتیپ‌ها در محیط‌های مختلف به دلیل سهولت در تفسیر نتایج گرافیکی کارآتر و کاربردی‌تر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Yield stability of bread wheat genotypes using AMMI and GGE biplot analysis

نویسندگان [English]

  • Mahdi Ehyaei 1
  • Khodadad Mostafavi 2
  • Farshad Bakhtiar 3
  • Abdollah Mohammadi 2
1 Ph.D. Student, Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Associate Professor, Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran
3 Research Associate Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Introduction
Production of high-yielding and stable cultivars is the most important objective of crop breeding programs, including wheat. The final yield of each plant is determined by the potential of genotype (G), the effect of environment (E) and the interaction effect of genotype × environment (GE). Several methods have been presented to study the genotype × environment interaction and determine stable genotypes, which can totally be divided into two main categories, univariate and multivariate. Univariate methods do not provide a complete view of the complex and multidimensional nature of GE interaction, therefore, the use of multivariate methods is suggested to solve this problem. Among the multivariate methods, AMMI and GGE-Biplot methods are more important. The objective of the current experiment was to investigate the interaction between genotype and environment for grain yield of 20 wheat genotypes and to identify stable and high-yielding genotypes.
Materials and methods
 The plant materials of this experiment were 20 wheat genotypes including 18 irrigated wheat lines along with two control cultivars, Rakhshan and Baharan. The experiment was carried out in a randomized complete block design with three replications in five temperate regions (Karaj, Kermanshah, Zarghan, Boroujerd and Mashhad stations) during two cropping years 2019-2020. Two multivariate methods, AMMI and GGE-Biplot, were used to investigate the interaction effect of genotype × environment and to evaluate the stability of genotypes. R software was used to analyze the experimental data using the AMMI method, and Genstat software was used to analyze the data using the GGE biplot graphic method.
Research findings
The results of combined analysis of variance showed that the interaction effect of genotype × year and genotype × year × location were significant at the 1% probability level. Based on the results of AMMI analysis, the effect of environment, genotype and genotype × environment interaction were significant. Based on AMMI1 and AMMI2 models, AMMI stability value (ASV) parameter and genotype stability index (GSI), genotype 12 with an avearage grain yield of 8.27 tons per hectare was determined as the best genotype. The study of GGE-biplot polygon led to the identification of three mega-environments, that Boroujerd had the highest power of representation and differentiation among different environments. Genotypes 12 and 9, in addition to having high yield, had higher yield stability. Genotypes 12 and 9 were placed in the center of the circle as the ideal genotype and genotypes 5, 7 and 18 were ranked next. Based on the results of both methods, genotype 12 was identified as the most stable genotype.
Conclusion
The results of AMMI, AMMI stability index (ASV) and genotype stability index (GSI) compared to GGE biplot results showed that all these indices have a good potential to evaluate the performance stability of genotypes. Nevertheless, GGE biplot results are more effective and practical in examining the compatibility and stability of genotypes' performance in different environments due to the ease of interpreting graphical results.

کلیدواژه‌ها [English]

  • AMMI stability value
  • Bread wheat
  • Genotype × environment interaction
  • Ideal genotype
  • Mega environment
Abay, F. and Bjørnstad, A. 2009. Specific adaptation of barley varieties in different locations in Ethiopia. Euphytica 167: 181-195.##Akter, A., Hasan, M.J., Kulsum, M.U., Rahman, M.H., Paul, A.K., Lipi, L.F. and Akter, S. 2015. Genotype×environment interaction and yield stability analysis in hybrid rice (Oryza sativa L.) by AMMI biplot. Bangladesh Rice Journal 19 (2): 79-86.##Alipour, H., Abdi, H., Rahimi, Y. and Bihamta, M.R. 2019. Investigating grain yield and yield stability of wheat cultivars introduced in Iran over the last half century. Cereal Research 9 (2): 157-167. (In Persian with English Abstract).##Alwala, S., Kwolek, T., McPherson, M., Pellow, J. and Meyer, D. 2010. A Comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. Field Crops Research 119: 225-230.##Annicchiarico, P., Harzic, N. and Carroni, A.M. 2010. Adaptation, diversity, and exploitation of global white Lupin (Lupinus albus L.) landrace genetic resources. Field Crops Research 119: 114-124.##Arif, A., Parveen, N., Waheed, M.Q., Atif, R.M., Waqar, I. and Shah, T.M. 2021. A comparative study for assessing the drought-tolerance of chickpea under varying natural growth environments. Frontiers in Plant Science 11: 2228.##Bakhtiar, F., Najafian, G., Kafashi, A.K., Jafar-Nejad, A., Hassani, F., Zareh Faizabadi, A., Amin Azarm, D., Nabati, E. and Abdi, H. 2021. Genotype×environment interaction on grain yield of bread wheat (Triticum aestivum L.) promising lines temperate regions of Iran. Iranian Journal of Crop Sciences 23 (2): 142-157. (In Persian with English Abstract).##Bhartiya, A., Aditya, J.P., Kumari, V., Kishore, N., Purwar, J.P., Agraval, A. and Kant, L. 2017. GGE biplot & AMMI analysis of yield stability in multienvironment trial of soybean [Glycine max (L.) Merril] genotypes under rainfed condition of north western Himalayan hills. The Journal of Animal and Plant Sciences 27 (1): 227-238.##Bishwas, K.C., Poudel, M.R. and Regmi, D. 2021. AMMI and GGE biplot analysis of yield of different elite wheat line under terminal heat stress and irrigated environments. Heliyon 7 (6): e07206.##Bocianowski, J., Tratwal, A. and Nowosad, K. 2021. Genotype by environment interaction for main winter triticale varieties characteristics at two levels of technology using additive main effects and multiplicative interaction model. Euphytica  217: 26.##Chen, X., Wu, B. and Zhang, Z. 2016. Evaluation of adaptability and stability for important agronomic traits of oat (Avena spp.) germplasm resources. Journal of Plant Genetic Resources 17 (4): 577-585.##Chimdesa, O., Asefa, K., Alemu, S. and Teshom, G. 2019.  Evaluating agronomic performance and yield stability of improved bread wheat varieties across low moisture stress areas of Guji zone, Southern Oromia. International Journal of Research in Agriculture and Forestry 6 (5): 1-10.##Dallo, S.C., Zdziarski, A.D., Woyann, L.G., Milioli, A.S., Zanella, R., Conte, J. and Benin, G. 2019. Across year and year-by-year GGE biplot analysis to evaluate soybean performance and stability in multi-environment trials. Euphytica 215: 113-125.##Daryanto, S., Wang, L. and Jacinthe, P.A. 2016. Global synthesis of drought effects on maize and wheat production. PLoS ONE 11 (5): e0156362.##Ebdon, J.S. and Gauch, H.G. 2002. Additive main effect and multiplicative interaction analysis of national turf grass performance trials: II. Cultivar recommendations. Crop Science 42: 497-506.##Enghiad, A., Ufer, D., Countryman, A. and Thilmany, D. 2017. An overview of global wheat market fundamentals in an era of climate concerns. International Journal of Agronomy 19: 1-15.##Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C. and Carlsson, A.S. 2021. Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS ONE 16: e0258211.##FAOSTAT. 2022.  https://www.fao.org/3/cc2211en/cc2211en.pdf.##Farshadfar, E. 2008. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences 11 (14): 1791-1796.##Farshadfar, E., Mahmodi, N. and Yaghotipoor, A. 2011. AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science 5 (13): 1837-1844.##Friedli, C.N., Abiven, S., Fossati, D. and Hund, A. 2019. Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica  215: 85.##Gauch, H.G. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers, Amsterdam, Netherlands. 278 p.##Gauch, H.G. and Zobel, R.W. 1988. Predictive and postdictive success of statistical analyses of yield trials. Theoretical and Applied Genetics 76 (1): 1-10.##Gauch, H.G. and Zobel, R.W. 1997. Identifying mega-environments and targeting genotypes. Crop Scienc 37: 311-326.##Ghaed-Rahimi, L., Heidari, B. and Dadkhodaie, A. 2015. Genotype × environment interactions for wheat grain yield and antioxidant changes in association with drought stress. Archives of Agronomy and Soil Science 61 (2): 153-171.##Ghodrati-Niari, F. and Abdolshahi, R. 2014. Evaluation of yield stability of 40 bread wheat (Triticum aestivum L.) genotypes using additive main effects and multiplicative interaction (AMMI). Iranian Journal of Crop Sciences 16 (4): 322-333. (In Persian with English Abstract).##Guo, X., Xin, Z., Yang, T., Ma, X., Zhang, Y., Wang, Z., Ren, Y. and Lin, T. 2020. Metabolomics response for drought stress tolerance in Chinese wheat genotypes (Triticum aestivum). Plants 9: 520.##Heidari, S., Azizinezhad, R. and Haghparast, R. 2017. Determination of yield stability in durum wheat genotypes under rainfed and supplementary irrigation conditions. Journal of Agricultural Science and Technology 19: 1355-1368.##Hosseini Chaleshtori, M., Rahim Soroush, H., Allahgholipour, M., Kavoosi, M., Yazdani, M., Majidi, F., Tajaddodi Talab, K. and Danyali, F. 2021. Evaluation of adaptability and grain yield stability of rice (Oryza sativa L.) promising lines using GGE biplot. Iranian Journal of Crop Sciences 23 (2): 184-197. (In Persian with English Abstract).##Islam, S.S., Hasan, A.K., Khaldun, A.B.M. and Nazir, N. 2021. Additive main effect and multiplicative interaction (AMMI) model analysis for yield performance and G×E interaction in a multi-environmental trial of aromatic fine rice in Bangladesh. Journal of Cereal Research 13 (2): 171-179.##Kanouni, H., Taleei, A.R. and Khalily, M. 2007. Stability analysis of seed yield and one-hundred seeds weight in Desi type chickpea genotypes. Seed and Plant Journal 23 (3): 297-310. (In Persian with English abstract).##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., Armion, M. and Sharifi, P. 2020. Stability analysis of durum wheat genotypes by GGE biplot method. Journal of Crop Breeding 12 (35) :1-17. (In Persian with English Abstract).##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K. and Armion, M. 2021. Evaluation of genotype×environment interaction and determining grain yield stability of durum wheat genotypes in uniform regional yield trials in semi-warm rain-fed areas. Plant Genetic Researches 7 (2): 25-40. (In Persian with English Abstract).##Karimizadeh, R., Mohammadi, M., Sabaghnia, N., Mahmoodi, A.A., Roustami, B., Seyyedi, F. and Akbari, F. 2013. GGE biplot analysis of yield stability in multi environment trials of lentil genotypes under rainfed condition. Notulae Scientia Biologicae 5 (2): 256-262.##Laskowski, W., Gorska-Warsewicz, H., Rejman, K., Czeczotko, M. and Zwolinska, J. 2019. How important are cereals and cereal products in the average polish diet? Nutrients 11: 679-700.##Li, X.P., Li, M.Y., Ling, A.J., Hu, X.Z., Ma, Z., Liu, L. and Li, Y.X. 2017. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. Journal of Cereal Science 73: 130-137.##Liersch, A., Bocianowski, J., Nowosad, K., Mikołajczyk, K., Spasibionek, S., Wielebski, F., Matuszczak, M., Szała, L., Cegielska-Taras, T., Sosnowska, K. and Bartkowiak-Broda, I. 2020. Effect of genotype×environment interaction for seed traits in winter oilseed rape (Brassica napus L.). Agriculture 10: 607. doi:10.3390/agriculture10120607.##Mahadevaiah, C., Hapase, P., Sreenivasa, V., Hapase, R., Swamy, H.K., Anilkumar, C., Mohanraj, K., Hemaprabha, G. and Ram, B. 2021. Delineation of genotype×environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane. Scientific Reports 11: 18649.##Moayyedi, A.A., Najafi Mirak, T., Ahmadi, G.H. and Ghandi, A. 2020. Stability analysis of seed yield in durum wheat genotypes (Triticum turgidum L. var durum) using AMMI analysis. Journal of Agroecology 12 (3): 359-371. (In Persian with English Abstract).##Mohamed, N. and Ahmed, A.A. 2013. Additive main effects and multiplicative interaction (AMMI) and GGE-biplot analysis of genotype×environment interactions for grain yield in bread wheat (Triticum aestivum L). African Journal of Agricultural Research 8: 5197-5203.##Mohammadi, R., Farshadfar, E. and Amir, A. 2015. Interpreting genotype environment interactions for grain yield of rain-fed durum wheat in Iran. The Crop Journal 3 (6): 526-535.##Mortazavian, S., Nikkhah, H., Hassani, A., Sharif-al-Hosseini, M., Taheri, M. and Mahlooji, M. 2014. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultural Science and Technology 16: 609-622.##Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M. and Zali, H., 2018. Evaluation of durum wheat cultivars and promising lines for yield and yield stability in warm and dry areas using AMMI model and GGE biplot. Journal of Crop Breeding 10 (28): 1-12. (In Persian with English Abstract).##Najafi Mirak, T., Moayedi, A.A., Sasani, S. and Ghandi, A. 2019. Evaluation of adaptation and grain yield stability of durum wheat (Triticum turgidum L.) genotypes in temperate agro-climate zone of Iran. Iranian Journal of Crop Sciences 21 (2): 127-138. (In Persian with English Abstract).##Naroui Rad, M.R., Abdul Kadir, M., Rafii, M.Y., Jaafar, H., Naghavi, M.R. and Ahmadi, F. 2013. Genotype×environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Australian Journal of Crop Science 7 (7): 956-961.##Nayak, D., Bose, L.K., Singh, S. and Nayak, P. 2008. Additive main effects and multiplicative interaction analysis of host-pathogen relationship in rice-bacterial blight pathosystems. The Plant Pathology Journal 24 (3): 337-351.##Neisse, A.C., Kirch, J.L. and Hongyu, K. 2018. AMMI and GGE biplot for genotype×environment interaction: A medoid-based hierarchical cluster analysis approach for high-dimensional data. Biometrical Letters 55 (2): 97-121.##Omrani, S., Naji, A.M. and Esmaeilzadeh Moghaddam, M. 2017. Yield stability analysis of promising bread wheat lines in southern warm and dry agro climatic zone of Iran using GGE biplot model. Journal of Crop Breeding 9 (23) :157-165. (In Persian with English Abstract).##Oral, E., Kendal, E. and Dogan, Y. 2018. Selection the best barley genotypes to multi and special environments by AMMI and GGE biplot models. Fresenius Environmental Bulletin 27: 5179-5187.##Poudel, M.R., Ghimire, S., Pandey, M.P., Dhakal, K.H., Thapa, D.B. and Poudel, H.K. 2020. Evaluation of wheat genotypes under irrigated, heat stress and drought condition. Journal of Biology and Today's World 9 (1): 212.##Pour-Aboughadareh, A., Barati, A. and Koohkan, S.A. 2022. Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre 46: 19.##Rahmati, H., Nakhzari Moghaddam, A., Rahemi Karizaki, A. and evarsaji, Z. 2021. Evaluation of grain yield stability in advanced genotypes of durum wheat (Triticum turgidum var. Durum) using parametric and non-parametric methods of stability analysis. Journal of Crop Breeding 13 (37) :63-74. (In Persian with English Abstract).##Rezene, Y. 2019. GGE-biplot analysis of multi-environment yield trials of common bean (Phaseolus vulgaris L.) in the southern Ethiopia. Journal of Plant Studies 8 (1): 35.##Sadeghzadeh, B., Mohammadi, R., Ahmadi, H., Abedi-asl, G.R., Khalilzadeh, G.R., Mohammadfam, M., Bahrami, N., Ismaeilzad, H., Khaledian, M.S. and Hasanpour-hosni, M. 2017. Efficiency of GGE biplot and AMMI analyses for adaptability and grain yield stability of durum wheat lines under different environments. Journal of Crop Ecophysiology 11 (2): 413-436. (In Persian with English Abstract).##Sanchez-Martın, J., Rispail, N., Flores, F., Emeran, A.A., Sillero, J.C., Rubiales, D. and Prats, E. 2017. Higher rust resistance and similar yield of oat landraces versus cultivars under high temperature and drought. Agronomy for Sustainable Development 37 (1): 3-15.##Santos, P.R., Oliveira, T.R., Skeen, P., Nascimento, M.R., Silva Costa, K.D., Araújo, E.R., Pereira, H.S. and Costa, A.F. 2019. GGE biplot and REML/BLUP based-analysis of yield stability and adaptability for common beans in multi-environment trials. Revista Brasileirade Ciencias Agrarias 14 (2): 1-8.##Sharifi, P., Hashem, A., Rahman, E., Ali, M. and Abouzar, A. 2017. Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Science 24: 173-180.##Singh, C., Gupta, A., Gupta, V., Kumar, P., Sendhil, R., Tyagi, B.S. Singh, G., Chatrath, R. and Singh, G.P. 2019. Genotype×environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models. Crop Breeding and Applied Biotechnology 19: 309 -318.##Verma, A. 2021. Wheat genotypes evaluated for G×E interactions in central zone of the country by AMMI analysis. Annals of Plant and Soil Research 23 (3): 341-345.##Wardofa, G.A., Asnake, D. and Mohammed, H. 2019. GGE biplot analysis of genotype by environment interaction and grain yield stability of bread wheat genotypes in central Ethiopia. Journal of Plant Breeding and Genetics 7 (2): 75-85.##Yan, W. 2016. Analysis and handling of G×E in a practical breeding program. Crop Science 56: 2106-2118. doi: 10.2135/cropsci2015.06.0336.##Yan, W. and Kang, M.S. 2002. GGE-biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton. 288 p.##Yan, W., Hunt, L.A. Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40: 597-605.##Yan, W., Kang, M.S., Ma, B., Woods, S. and Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47: 643- 655.##