نقشه یابی ارتباطی صفات فیزیولوژیک و بیوشیمیایی گندم با استفاده از نشانگرهای SNP در شرایط بهینه و تنش کمبود روی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

مقدمه: تنش­های محیطی نظیر تنش کمبود عناصر غذایی، تهدیدات جدی برای تولیدات کشاورزی محسوب می­شوند. عنصر روی از جمله عناصر ضروری کم­مصرف، اما با ارزش تغذیه­ای بالا است که نقش مهمی در رشد ریشه، افزایش عملکرد محصول، مقاومت گیاه در برابر بیماری­ها، فتوسنتز، یکپارچگی غشای سلولی، تشکیل دانه گرده، تولید انرژی و افزایش آنزیم­های آنتی­اکسیدانی و کلروفیل در بافت­های گیاهی دارد. علاوه بر این، روی برای تولید هورمون‌های گیاهی مانند اسید آبسیزیک، اکسین، جیبرلین‌ها و سیتوکینین ضروری و کمبود آن باعث اختلال در تکثیر سلول‌های گیاهی می‌شود. میزان روی دانه گندم بین 20 تا 30 میلی­گرم در کیلوگرم است. حدود 50 درصد از خاک­هایی که برای تولید غلات در دنیا استفاده می­شوند، مقدار روی قابل استفاده کافی ندارند. یکی از راه­کارهای مقابله با کمبود روی، اصلاح ارقام روی-کارا است و بنابراین انجام تحقیقات پایه به­منظور شناسایی ژن­های کنترل کننده آن ضروری است. در تحقیق حاضر 64 رقم گندم بهاره تحت شرایط بهینه و تنش کمبود روی مورد مطالعه گرفت و هدف از آزمایش، شناسایی مکان­های ژنومی کنترل کننده صفات فنولوژیک، فیزیولوژیک و بیوشیمیایی با استفاده از روش GWAS مبتنی بر LD بر اساس نشانگرهای SNP بود.
مواد و روش ­ها: به­منظور نقشه­یابی در سطح ژنوم عملکرد و صفات فیزیولوژیک و بیوشیمیایی در ارقام گندم نان، تعداد 64 رقم گندم بهاره به صورت یک آزمایش گلدانی در قالب طرح لاتیس ساده تحت دو شرایط بهینه و تنش کمبود روی در مزرعه تحقیقاتی دانشگاه ارومیه کشت شدند. صفات مطالعه شده شامل روز تا جوانه­زنی، روز تا سنبله­دهی، روز تا گرده­افشانی، روز تا رسیدگی فیزیولوژیک، طول پرشدن دانه، دمای کانوپی، کلروفیل کل، شاخص سطح برگ، وزن تر و خشک اندام هوایی، محتوای آب نسبی برگ، غلظت روی اندام هوایی،  غلظت پروتئین دانه و عملکرد دانه بودند. ارزیابی ژنوتیپی جمعیت با استفاده از 36360 نشانگر SNP انجام شد. برای تعیین ساختار جمعیت، از تجزیه به مؤلفه­های اصلی (PCA) استفاده و نتایج PCA به­جای ماتریس Q
به­عنوان متغیر کمکی جهت انجام تجزیه ارتباطی در نظر گرفته شد. برای انجام تجزیه ارتباطی و شناسایی نشانگرهای پیوسته با ژن­های کنترل کننده صفات مورد مطالعه نیز از دو روش GLM و MLM استفاده و ارتباط­های نشانگر- صفت (MTA) معنی­دار به­طور جداگانه برای هر یک از شرایط آزمایشی شناسایی شد.
یافته­ های تحقیق: نتایج تجزیه ارتباطی با استفاده از روش GLM تعداد 145 ارتباط نشانگر- صفت (MTA) تحت شرایط بهینه و 135 MTA تحت شرایط تنش کمبود روی شناسایی کرد، در حالی­که با استفاده از روش MLM تعداد 165 MTA تحت شرایط بهینه و 142 MTA تحت شرایط تنش کمبود روی شناسایی شد. بیش­ترین و کم­ترین تعداد ارتباط نشانگر- صفت معنی­دار با هر دو روش GLM و MLM تحت شرایط بهینه، به­ترتیب برای صفت وزن خشک و طول دوره پرشدن دانه شناسایی شد، در حالی­که تحت شرایط تنش کمبود روی، بیش­ترین تعداد ارتباط نشانگر- صفت معنی­دار با هر دو روش تجزیه ارتباطی مربوط به صفت محتوای آب نسبی برگ و کم­ترین تعداد مربوط به صفات غلظت پروتئین دانه و غلظت روی اندام هوایی بود. از ارتباط­های نشانگر- صفت معنی­دار شناسایی شده در این آزمایش، می­توان به­منظور افزایش کارایی برنامه­های به­نژادی از طریق فرایند انتخاب به­کمک نشانگر استفاده کرد.
نتیجه ­گیری: نتایج مطالعه حاضر، کارایی استفاده از روش نقشه­یابی ارتباطی و مدل­های GLM و MLM را در شناسایی نشانگرهای پیوسته با صفات ارزیابی شده در گندم نشان داد. همچنین، اطلاعات به­دست آمده از این آزمایش نشان داد که نشانگرهای SNP ابزار توانمندی برای ارزیابی تنوع ژنتیکی و تهیه ساختار جمعیت­های گندم هستند و می­توانند از طریق انتخاب به­کمک نشانگر در برنامه­های به­نژادی مورد استفاده قرار گیرند. البته لازم است نشانگرهای شناسایی شده در جمعیت­های بزرگ­تر مورد بررسی قرار گیرند تا از ارتباط آن­ها با صفات مورد مطالعه اطمینان حاصل شود. در این مطالعه چندین مکان ژنی مشترک نیز برای صفات مورد مطالعه شناسایی شد که می­توان از آن­ها به­منظور گزینش همزمان چند صفتی در برنامه­های به­نژادی آینده استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Association mapping of physiological and biochemical traits of wheat using SNP markers under optimal and zinc deficiency stress conditions

نویسندگان [English]

  • Nasrin Valipour 1
  • Hadi Alipour 2
  • Reza Darvishzadeh 3
1 Graduate M.Sc., Department of Plant Production and Genetics, Urmia University, Urmia, Iran
2 Associate Professor, Department of Plant Production and Genetics, Urmia University, Urmia, Iran
3 Professor, Department of Plant Production and Genetics, Urmia University, Urmia, Iran
چکیده [English]

Introduction
Environmental stresses such as nutrients deficiency stress are serious threats to agricultural products. Zinc is one of the low-consumption essential nutrients but with high nutritional value, which plays an important role in root growth, increasing yield, plant resistance to diseases, photosynthesis, cell membrane integrity, pollen formation, energy production and increasing antioxidant enzymes and chlorophyll in plant tissues. Furthermore, zinc is essential for production of plant hormones such as abscisic acid, auxin, gibberellins and cytokinin, and its deficiency causes disruption in plant cell reprodution. Wheat grain contains zinc about from 20 to 30 mg/kg. About 50% of the soils used for cereal production in the world do not have enough usable zinc. One of the strategies to compensate for zinc deficiency is to improve zinc-efficient cultivars. Therefore, it is necessary to conduct basic research to identify the genes controlling zinc. In the current research, 64 spring wheat cultivars were studied under normal and zinc deficiency stress conditions, and the objective of this experiment was to identify genomic locations controlling phenological, physiological and biochemical characteristics using LD-based GWAS method based on SNP markers.
Materials and methods
 To genome-wide association study of yield and physiological and biochemical traits in Iranian bread wheat varieties, 64 varieties of spring wheat were cultivated as a pot experiment in a simple lattice design under two normal and zinc deficiency stress conditions in the research farm of Faculty of Agriculture, Urmia University, Urmia, Iran. The studied traits include days to germination, days to booting, days to pollination, days to physiological maturity, grain filling period, canopy temperature, total chlorophyll, leaf area index, fresh and dry shoot weight, relative water content, shoot zinc concentration, grain protein concentration and grain yield. Genotypic evaluation of the population was performed using 36360 SNP markers. To determine the population structure, principal component analysis (PCA) was used and PCA results were considered as covariate variables instead of the Q matrix for association analysis. For association analysis and identification of linked markers to the genes controlling the studied traits, GLM and MLM methods were used and significant marker-trait associations (MTAs) were separately identified for each of the experimental conditions.
 
Research findings
The results of association analysis using the GLM method identified 145 marker-trait associations (MTAs) under normal conditions and 135 MTAs under zinc deficiency stress conditions, while using the MLM method, 165 and 142 MTAs were identified under normal and zinc deficiency stress conditions, respectively. The highest and lowest number of significant marker-trait associations with both GLM and MLM methods under normal conditions were identified for dry weight and grain filling period, respectively, while under zinc deficiency stress conditions, the highest number of significant MTA with both association analysis methods was observed for leaf relative water content and the lowest number of MTA was observed for grain protein content and shoot zinc concentration. Identified markers can be used in breeding methods such as selection with in breeding programs. The significant marker-trait associations (MTAs) identified in this experiment can be used to increase the efficiency of breeding programs using the marker-assisted selection.
Conclusion
The results of the present study showed the efficiency of the association analysis method as well as the GLM and MLM models in identifying markers linked to evaluated traits in wheat. The information obtained from this experiment also showed that SNP markers are a powerful tool for evaluating genetic diversity and preparing the structure of wheat populations and can be used in breeding programs via marker-assisted selection. Although, it is necessary to investigate the markers identified in larger populations to ensure their relationship with the studied traits. In this study, several common and similar gene loci were also identified for the studied traits, which can be used for the simultaneous multi-traits selection in future breeding programs.

کلیدواژه‌ها [English]

  • Genome wide association studies (GWAS)
  • Marker-trait association
  • Nutrient stress
  • Population structure
  • Spring wheat

این مقاله حاوی یک فایل تکمیلی برای شکل های مقاله است.

Alipour, H. 2016. Association mapping of important agronomic traits in bread wheat. Ph.D. Dissertation, University of Tehran, Tehran, Iran. (In Persian).##Al-Maskri, A.Y., Sajjad, M. and Khan, S.H. 2012. Association mapping: A step forward to discovering new alleles for crop improvement. International Journal of Agriculture and Biology 14: 153-160.##Alomari, D.Z., Eggert, K., Von Wiren, N., Alqudah, A.M., Polley, A., Plieske, J., Ganal, M.W., Pillen, K. and Röder, M.S. 2018. Identifying candidate genes for enhancing grain Zn concentration in wheat. Frontiers in Plant Science 9: 1313. http://doi.org/10.3389/fpls.2018.01313.##Bernardo, R. 2013. Genome wide markers for controlling background variation in association mapping. The Plant Genome 6 (1): 2012-11. https://doi.org/10.3835/plantgenome2012.11.0028.##Bouis, H.E. and Welch, R.M. 2010. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50: 20-32.##Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. and Buckler, E.S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635.##Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A. 2007. Zinc in plants. New Phytologist 173: 677-702.##Breseghello, F. and Sorrells, M.E. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165-1177.##Cakmak, I. and Kutman, U.Á. 2018. Agronomic biofortification of cereals with zinc. A review. Europian Journal of Soil Science 69: 172-180.##Chao, S., Dubcovsky, J., Dvorak, J., Luo, M.C., Baenziger, S.P., Matnyazov, R., Clark, D.R., Talbert, L.E., Anderson, J.A., Dreisigacker, S. and Glover, K. 2010. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11: 1-17.##Chu, C.G., Xu, S.S., Friesen, T.L. and Faris, J.D. 2008. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Molecular Breeding 22: 251-266.##Cuthbert, J.L., Somers, D.J., Brûlé-Babel, A.L., Brown, P.D. and Crow, G.H. 2008. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics 117: 595-608.##Edae, E.A., Byrne, P.F., Manmathan, H., Haley, S.D., Moragues, M., Lopes, M.S. and Reynolds, M.P. 2013. Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. The Plant Genome 6 (2): 2013-04. https://doi.org/10.3835/plantgenome2013.04.0010.##Edwards, D., Batley, J. and Snowdon, R.J. 2013. Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics 126: 1-11.##FAO. 2022. FAOSTAT. Agriculture Organization of the United Nations. Statistical Database. Crop Prospects and Food Situation#4, December 2022. Ultima consulta 26.##Graham, R.D. and Rengel, Z. 1993. Genotypic variation in zinc uptake and utilization by plants. In: Robson, A.D. (Ed.). Zinc in Soils and Plants. Developments in Plant and Soil Sciences. Vol. 55. Springer, Dordrecht. pp: 107-118. https://doi.org/10.1007/978-94-011-0878-2.##Graham, R.D. and Welch, R.M. 1996. Breeding for staple food crops with high micronutrient density. Project paper. Agricultural strategies for micronutrients. International Food Policy Research Institute. 79 p.##Hao, C., Wang, L., Ge, H., Dong, Y. and Zhang, X. 2011. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLOS One 6: e17279.##Hosseini, T.A.S. and Abdolshahi, R. 2011. QTLs mapping controlling bread wheat germplasm (Triticum aestivum L.). Proceedings of the National Conference on Modern Agricultural Sciences and Technologies. September 10-12, 2011, Zanjan, Iran. (In Persian).##Ignaciuk, A. and Mason-D'Croz, D. 2014. Modelling adaptation to climate change in agriculture. OECD Food, Agriculture and Fisheries Papers 57-70.##Jacoby, W.G. 2000. Loess: A nonparametric, graphical tool for depicting relationships between variables. Electoral Studies 9: 577-613.##Jun, T.H., Van, K., Kim, M.Y., Lee, S.H. and Walker, D.R. 2008. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162: 179-191.##Khalid, S. and Amanullah and Ahmed, I. 2022. Enhancing zinc biofortification of wheat through integration of zinc, compost, and zinc-solubilizing bacteria. Agriculture 12 (7): 968.##Khoshgoftarmanesh, A.H. 2007. Assessment of plant nutritional status and optimal fertilizer management. Publication of Isfahan University of Technology, Isfahan, Iran. (In Persian).##Kirigwi, F.M., Van Ginkel, M., Brown-Guedira, G., Gill, B.S., Paulsen, G.M. and Fritz, A.K. 2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding 20: 401-413.##Krishnappa, G., Khan, H., Krishna, H., Kumar, S., Mishra, C.N., Parkash, O., Devate, N.B., Nepolean, T., Rathan, N.D., Mamrutha, H.M., Srivastava, P., Biradar, S., Uday, G., Kumar, M., Shngh, G. and Singh, G.P. 2022. Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Scientific Reports 12: 12444.##Liu, B.H. 2017. Statistical genomics: Linkage, mapping, and QTL analysis. CRC press. United States.##Liu, C., Yu, W., Cai, C., Huang, S., Wu, H., Wang, Z., Wang, P., Zheng, Y., Wang, P. and Ye, N. 2022. Genetic diversity of tea plant (Camellia sinensis (L.) Kuntze) germplasm resources in Wuyi Mountain of China based on single nucleotide polymorphism (SNP) markers. Horticulturae 8: 932.##Lu, F., Lipka, A.E., Glaubitz, J., Elshire, R., Cherney, J.H., Casler, M.D., Buckler, E.S. and Costich, D.E. 2013. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet 9: e1003215.##Mansori, S., Mehrabi, A.A., Mohammadi, V., Arminian, A. and Roder, M. 2017. Genetic variation, population structure and linkage disequilibrium in durum wheat (Triticum durum Desf.) genotypes using SNP markers. Modern Genetics Journal 1: 157-168.##Marza, F., Bai, G.H., Carver, B.F. and Zhou, W.C. 2006. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. Theoretical and Applied Genetics 112: 688-698.##McDonald, G.K., Genc, Y. and Graham, R.D. 2008. A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant and Soil 306: 49-55.##Mohammadi, V., Ghanadha, M.R., Zali, A.A., Yazdi-Samadi, B. and Byrane, P. 2004. Mapping QTLs for morphological traits in wheat. Iranian Journal of Agricultural Sciences 36: 145-157. (In Persian with English Abstract).##Morgounov, A.I., Belan, I., Zelenskiy, Y., Roseeva, L., Tömösközi, S., Bekes, F., Abugalieva, A., Cakmak, I., Vargas, M. and Crossa, J. 2013. Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science 93: 425-433.##Mourad, A.M., Belamkar, V. and Baenziger, P.S. 2020. Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genomics 21: 1-12.##Peck, A.W., McDonald, G.K. and Graham, R.D. 2008. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal of Cereal Science 47: 266-274.##Pour-Aboughadareh, A., Poczai, P., Etminan, A., Jadidi, O., Kianersi, F. and Shooshtari, L. 2022. An analysis of genetic variability and population structure in wheat germplasm using microsatellite and gene-based markers. Plants 11 (9): 1205.##Rathan, N.D., Krishna, H., Ellur, R.K., Sehgal, D., Govindan, V., Ahlawat, A.K., Krishnappa, G., Jaiswal, J.P., Singh, J.B., Sv, S., Ambati, D., Singh, S.K., Bajpai, S.K. and Singh, A.M. 2022. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Scientific Reports 12: 7037.##Sahranavard Azartamar, F., Darvishzadeh, R., Ghadimzadeh, M., Azizi, H. and Aboulghasemi, Z. 2015. Identification of SSR loci related to some important agromorphological traits in different oily sunflower (Helianthus annuus L.) lines using association mapping. Crop Biotechnology 10: 73-87. (In Persian with English Abstract).##Schlötterer, C. 2003. Hitchhiking mapping–functional genomics from the population genetics perspective. Trends in Genetics 19: 32-38.##Silveira, J.A.G., de Almeida Viégas, R., da Rocha, I.M.A., de Oliviera Monteiro Moreira, A.C., de Azevedo Moreira, R. and Oliveira, J.T.A. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology 160: 115-123.##Stich, B., Utz, H.F., Piepho, H.P., Maurer, H.P. and Melchinger, A.E. 2010. Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize. Theoretical and Applied Genetics 120: 553-561.##Tabatabaie, S.M.T., Solouki, M., Fakhery, B., Ismailzadeh Moghadam, M. and Mehdinezhad, N. 2004. Linkage mapping of bread wheat quality characteristics in bread wheat under drought stress. Journal of Modern Genetics 13: 281-292. (In Persian with English Abstract).##Tsilo, T.J., Hareland, G.A., Simsek, S., Chao, S.  and Anderson, J.A. 2010. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theoretical and Applied Genetics 121: 717-730.##Tuberosa, R., Gill, B.S. and Quarrie, S.A.  2002. Cereal genomics: Ushering in a brave new world. Plant Molecular Biology 48: 445-449.##VanRaden, P.M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91: 4414-4423.##Velu, G., Singh, R.P., Huerta-Espino, J., Peña, R.J., Arun, B., Mahendru-Singh, A., Mujahid, M.Y., Sohu, V.S., Mavi, G.S., Crossa, J. and Alvarado, G. 2012. Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Research 137: 261-267.##Wang, R.X., Hai, L., Zhang, X.Y., You, G.X., Yan, C.S. and Xiao, S.H. 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theoretical and Applied Genetics 118: 313-325.##Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B.E., Maccaferri, M., Salvi, S., Milner, S.G., Cattivelli, L. and Mastrangelo, A.M. 2014. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787-796.##Welch, R.M. 2001. Impact of mineral nutrients in plants on human nutrition on a worldwide scale. In: Horst, W.J., Schenk, M.K., et al., (Eds.). Plant nutrition: Food security and sustainability of agro-ecosystems through basic and applied research Vol. 92. Springer, Dordrecht 284-285.##Zhang, D., Bai, G., Zhu, C., Yu, J. and Carver, B.F. 2010. Genetic diversity, population structure, and linkage disequilibrium in US elite winter wheat. The Plant Genome 3: 117-127.##