مطالعه برهمکنش ژنوتیپ × محیط در ژنوتیپ‌های امیدبخش گندم نان در اقلیم سرد با استفاده از روش‌های AMMI و GGE-Biplot

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

3 دانشیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

4 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل، سازمان تحقیقات، آموزش و ترویج کشاورزی اردبیل، ایران

5 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران

6 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

7 محقق، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، سازمان تحقیقات، آموزش و ترویج کشاورزی، قزوین، ایران

8 محقق، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات ، آموزش و ترویج کشاورزی ، مشهد، ایران

9 محقق، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

10 محقق، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آ.شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران

11 محقق، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

چکیده

مقدمه: برهمکنش ژنوتیپ × محیط یکی از مسائل پیچیده در برنامه‌های به‌نژادی گیاهان برای تهیه ژنوتیپ‌های با عملکرد بالا و پایدار است که قبل از آزادسازی رقم‌های جدید طی آزمایش‌های چندناحیه‌ای ارزیابی می‌شود. وجود برهمکنش ژنوتیپ × محیط باعث می‌شود که عملکرد ارقام تحت تاثیر محیط قرار گیرد و منجر به تفاوت عملکرد ارقام در محیط‌های مختلف شود. در میان روش‌های چند متغیره، مدل‌های AMMI و GGE-Biplot از اهمیت بالایی برخوردار هستند و قدرت تفکیک بالایی در شناسایی ژنوتیپ‌های پایدار و با عملکرد بالا دارند. هدف از این مطالعه، ارزیابی پایداری ژنوتیپ‌های امیدبخش گندم نان و شناسایی ژنوتیپ‌های پایدار و با عملکرد بالا در اقلیم سرد کشور بود.
مواد و روش‌ها: تعداد 14 لاین گندم آبی با تیپ رشد زمستانه و بینابین (Facultative) به‌همراه ارقام شاهد میهن، حیدری، زرینه و زارع (جمعاً 18 ژنوتیپ) در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در ایستگاه‌های تحقیقاتی کرج، همدان، مشهد، جلگه‌رخ، میاندوآب، اردبیل، اراک، اقلید، تبریز و قزوین بررسی شدند. برای تجزیه داده‌ها ابتدا تجزیه واریانس ساده در هر سال و مکان و سپس تجزیه واریانس مرکب برای عملکرد دانه پس از تایید همگنی واریانس ‌خطاهای آزمایشی انجام شد. برای بررسی پایداری ژنوتیپ‌های مورد مطالعه نیز از دو روش AMMI و GGE-Biplot استفاده شد. همچنین، پارامترهای پایداری AMMI و شاخص‌های انتخاب هم‌زمان بر مبنای این پارامترها محاسبه شدند.
یافته‌های تحقیق: نتایج تجزیه مرکب نشان داد که اثرات اصلی محیط و ژنوتیپ و برهمکنش ژنوتیپ × محیط به‌ترتیب 2/47، 8/9 و 3/28 درصد از مجموع مربعات کل داده‌ها را توجیه کردند. ژنوتیپ‌های G7، G8، G12، G2 و G1 به‌ترتیب بیش‌ترین و ژنوتیپ‌های G15، G18، G10، G13، G14 و G16 کم‌ترین مقدار عملکرد دانه را در بین ژنوتیپ‌های مورد بررسی دارا بودند. نتایج تجزیه AMMI وجود اختلاف معنی‌دار میان محیط‌ها، ژنوتیپ‌ها و برهمکنش بین آن‌ها را نشان داد. در این روش، 12 مؤلفه اصلی معنی‌دار با توجیه 98 درصد از واریانس برهمکنش ژنوتیپ × محیط شناسایی شد و دو مؤلفه اصلی اول و دوم 27/46 درصد از تغییرات برهمکنش را تبیین کردند. بر اساس بای‌پلات AMMI1، ژنوتیپ‌های G8، G3، G1 و G4 و محیط‌های E9 و E5 با داشتن عملکرد دانه بسیار بالاتر از میانگین و مقدار بسیار پایین مؤلفه اول، به‌عنوان پایدارترین ژنوتیپ‌ها و محیط‌ها شناخته شدند. بای‌پلات AMMI2 ژنوتیپ خاصی را به‌عنوان ژنوتیپ با سازگاری عمومی شناسایی نکرد، با این‌حال ژنوتیپ‌های G3 و G4 تا حدودی نسبت به بقیه سازگاری عمومی بهتری را نشان دادند. بر اساس شاخص‌های انتخاب هم‌زمان مبتنی بر پارامترهای AMMI به‌ترتیب ژنوتیپ‌های G8، G12، G1، G4 و G3 با کم‌ترین مجموع رتبه، به‌عنوان ژنوتیپ‌های پایدار و با عملکرد بالا انتخاب شدند. نتایج روش GGE-Biplot بر اساس بای‌پلات میانگین عملکرد و پایداری، ژنوتیپ‌های G8، G4، G3 و سپس G1 که دارای عملکرد دانه بالاتر از میانگین ژنوتیپ‌ها بودند را به‌عنوان پایدارترین ژنوتیپ‌ها معرفی کرد. بای‌پلات الگوی کدام-برتر-کجا، ژنوتیپ‌ها و محیط‌ها را به‌ترتیب به پنج و سه گروه تفکیک کرد. بر این اساس، ژنوتیپ‌های G12 ، G11 ، G3 و G4 در کرج و میاندوآب و ژنوتیپ‌های G7 ،G5 و G8 در جلگه‌ خ و مشهد در هر دو سال سازگاری بهتری را نشان دادند. با توجه به بای‌پلات رتبه‌بندی ژنوتیپ‌ها، ژنوتیپ ایده‌آلی وجود نداشت، ولی ژنوتیپ‌های G8، G3، G5، G7 و G4 با کم‌ترین فاصله از ژنوتیپ ایده‌آل فرضی، به‌عنوان برترین ژنوتیپ‌ها شناسایی شدند.
نتیجه‌گیری: نتایج این مطالعه نشان داد که تفاوت اندکی بین دو روش AMMI و GGE-Biplot وجود دارد و هر دو روش تا حدودی ژنوتیپ‌های یکسانی را به‌عنوان ژنوتیپ‌های برتر معرفی کردند. ولی انتخاب ژنوتیپ‌ها بر مبنای شاخص‌های انتخاب هم‌زمان مبتنی بر پارامترهای تجزیه AMMI به‌دلیل در برگرفتن تمامی مؤلفه‌های معنی‌دار در محاسبه این پارامترها منطقی‌تر است. بنابراین بر مبنای شاخص‌های انتخاب هم‌زمان، ژنوتیپ‌های G8، G12، G1، G4 و G3 که دارای کم‌ترین مجموع رتبه بودند، به‌عنوان ژنوتیپ‌های پایدار و با عملکرد بالا معرفی می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Studying genotype × environment interaction effect in promising bread wheat genotypes in the cold climate using AMMI and GGE-Biplot methods

نویسندگان [English]

  • Ashkboos Amini 1
  • Ali Akbar Asasdi 2
  • Mohammad Rezaie Moradala 3
  • Marefat Ghasemi 4
  • Mehrdad Chaichi 5
  • Masoud Ezzat Ahmadi 6
  • Seyed Karim Hosseini Bay 7
  • Ali Akbar Mahmoodi Pirahani 8
  • Parviz Salehi 9
  • Nader Mir Fakhraie 10
  • Taghi Babaei 11
  • Adel Ghadiri 11
1 Associate Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Assistant Professor, Zanjan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
3 Associate Professor, West Azarbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
4 Assistant Professor, Ardabil Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ardabil, Iran
5 Assistant Professor, Hamedan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Hamedan, Iran.
6 Assistant Professor, Razavi Khorasan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
7 Researcher, Gazvin Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gazvin, Iran
8 Researcher ,Razavi Khorasan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
9 Researcher, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
10 Researcher, East Azarbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
11 Researcher, Markazi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Arak, Iran.
چکیده [English]

Introduction
Genotype × environment interaction is one of the complex issues in plant breeding programs to introduce high yielding and stable genotypes, which is evaluated using multi-regional experiments before the release of new cultivars. The presence of genotype × environment interaction causes the yield of cultivars to be affected by the environment and leads to differences in the yield of cultivars in different environments. AMMI and GGE-Biplot models are very important among the multivariate methods and have high resolution in identifying high yielding and stable genotypes. The objective of this study was to evaluate the stability of promising bread wheat genotypes and to identify high yielding and stable genotypes in the cold climate of the Iran.
Materials and methods
Fourtheen wheat genotypes with winter and intermediate (facultative) growth type along with Mihan, Heydari, Zarrineh and Zare varieties as controls (a total of 18 genotypes) were investigated in randomized complete block design with three replications in research stations of Karaj, Hamadan, Mashhad, Jalgarokh, Miandoab, Ardabil, Arak, Eqlid, Tabriz and Qazvin. To analyze the data, first analysis of variance was seprately done in each year and location, and then combined analysis of variance was performed for grain yield after confirming the homogeneity of the variances of experimental errors. AMMI and GGE-Biplot methods were used to investigate the stability of the studied genotypes. AMMI stability parameters and simultaneous selection indices were also calculated based on these parameters.
Research findings
The results of combined analysis of variance showed that the main effect of environment and genotype and the interaction of genotype × environment accounted for 47.2, 9.8 and 28.3 percent of the total sum of squares, respectively. Genotypes G7, G8, G12, G2 and G1 had the highest grain yield and genotypes G15, G18, G10, G13, G14 and G16 had the lowest grain yield among the studied genotypes respectively. The results of AMMI analysis showed the existence of significant differences between environments, genotypes and their interactions. The first 12 significant principal components of AMMI analysis explained 98% of the genotype × environment interaction variance, and the first and second principal components explained a total of 46.27% of this variance. Based on the AMMI1 biplot, genotypes G8, G3, G1 and G4 and environments E9 and E5 with the higher grain yield than average grain yield and the lowest value of the first principal component were recognized as the most stable genotypes and environments. AMMI2 biplot did not identify a specific genotype as the genotype with general compatibility, however, G3 and G4 genotypes showed somewhat better general compatibility than the others. The simultaneous selection indices based on AMMI parameters identified G8, G12, G1, G4, and G3 genotypes with the lowest total rank as the stable and high yielding genotypes, respectively. The results of GGE-Biplot method based on biplot of the average yield and stability, introduced G8, G4, G3 genotypes followed by G1 as the most stable genotypes, due to grain yield higher than the average of the studied genotypes. Which-won-where biplot pattern divided the studied genotypes and environments into five and three groups, respectively, so that G12, G11, G3 and G4 genotypes in Karaj and Miandoab and G5, G7 and G8 genotypes in Jalgerokh and Mashhad showed better adaptation in both years. According to the biplot of the ranking of genotypes, there was no ideal genotype, but G8, G3, G5, G7 and G4 genotypes with the smallest distance from the hypothetical ideal genotype were identified as the best genotypes.
Conclusion
The results of this study showed that there is a little difference between AMMI and GGE-Biplot analyzes and both methods presented the same genotypes as superior genotypes. However, it is more logical to select genotypes using simultaneous selection indices based on AMMI analysis parameters, because all significant components are included in the calculation of these parameters. Therefore, based on simultaneous selection indices, genotypes G8, G12, G1, G4 and G3 with the lowest total rank are introduced as stable and high yielding genotypes.

کلیدواژه‌ها [English]

  • Compatibility
  • Multi-regional experiments
  • Simultaneous selection index
  • Stability
Ajay, B. C., Aravind, J., & Abdul Fiyaz, R. (2018). CRAN: Package ammistability. Additive main effects and multiplicative interaction model stability parameters. Retrieved from: https://cran.r-Project.org/src/contrib/Archive/ammistability/.##Akmal, C. M. G. & Samaullah, M. Y. (2014). Adaptation and stability of aromatic rice lines in North Sumatera (in Indonesian). Food Crop Research Journal, 33(1), 9-16. doi:  10.21082/jpptp.v33n1.2014.p9-16.##Albert, M. J. A. (2004). A comparison of statistical methods to describe genotype × environment interaction and yield stability in multi-location maize trials. M. Sc. Dissertation. University of the Free State. Retrieved from: https://scholar.ufs.ac.za/items/bbaefd45-6841-42b7-8bf6-d850de7aba3e.##Amini, A., Asadi, A. A., Chaichi, M., Ezt-Ahmadi, M., Ghasemi Kalkhoran, M., Eivazi, A. R., Hosseinibay, S. K., Salehi, P., Babaei, T., Godsi, M., & Mirfakhraee, N. (2023). Investigating the stability of promising bread wheat genotypes in cold climate using AMMI and GGE Biplot analysis. Iranian Journal of Field Crop Science, 54(3), 119-134. [In Persian]. doi: 10.22059/ijfcs.2023.348569.654940.##Annicchiarico, P. (1997). Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica, 94, 53-62. doi: 10.1023/A:1002954824178.##Azizinia, S., & Mortazavian, M. M. (2015). A yield stability survey in winter type canola using univariate methods and genotypic distribution pattern. Journal of Crop Production & Processing, 5(15), 57-68. [In Persian]. doi: 10.18869/acadpub.jcpp.5.15.57.##Carvalho, L. P., Salgado, C. C. Farias, F. J. C., & Carneiro, V. Q. (2015). Stability and adaptability of genotypes of colorful fibers in relation to the fiber characters. Ciência Rural, 45, 598-605. [In Portuguese]. doi: 10.1590/0103-8478cr2013023.##Chimdesa, O., Asefa, K., Alemu, S., & Teshom, G. (2019). Evaluating agronomic performance and yield stability of improved bread wheat varieties across low moisture stress areas of Guji zone, Southern Oromia. International Journal of Research in Agriculture & Forestry 6(5), 1-10. doi: 10.19080/artoaj.2019.21.556183.##Danyali, S. F., Razavi, F., Ebadi Segherloo, A., Dehghani, H., & Sabaghpour, S. H. (2012). Yield stability in chickpea (Cicer arietinum L.) and study relationship among the univariate and multivariate stability parameters. Research in Plant Biology, 2(3), 46-61.##Ebadi, A. A., Sharifi, P., & Taher Hallajian, M. (2022). Stability analysis of grain yield of rice mutants by multivariate methods and superiority index. Journal of Agricultural of Science & Sustainable Production, 32(2), 313-332. doi: 10.22034/saps.2021.45415.2668.##Ebdon, J. S., & Gauch, H. G. (2002). Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype environment interaction. Crop Science, 42(2), 489-496. doi: 10.2135/cropsci2002.4890.##Ehyaei, M., Mostafavi, K., Bakhtiar, F., & Mohammadi, A. (2022). Yield stability of bread wheat genotypes using AMMI and GGE biplot analysis. Cereal Research, 12(2), 147-165. [In Persian]. doi: 10.22124/cr.2023.23333.1746.##FAO. (2022). World food and agriculture-statistical yearbook. Food and Agriculture Organization, Rome, Italy. Retrieved from: http://www.fao.org/3/cc2211en/cc2211en.pdf.##Farshadfar, E. (2008). Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences, 1791-17966. doi: 10.3923/pjbs.2008.1791.1796.##Farshadfar, E. (2015). The interaction effect of genotype and environment in plant breeding. 1st Vol. Islamic Azad University Press, Kermanshah, Iran. [In Persian].##Farshadfar, E., Mohammadi, M., Aghaee, M., & Vaisi, Z. (2012). GGE Biplot analysis of genotype× environment interaction in wheat-barley disomic addition lines. Australian Journal of Crop Science, 6(6), 1074-1079.##Gauch, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46, 1488-1500. doi: 10.2135/cropsci2005.07-0193.##Gauch, H. G., Piepho, H. P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Science, 48, 866-889. doi: 10.2135/cropsci2007.09.0513.##Gauch, H. G., & Zobel, R. W. (1997). Identifying mega-environments and targeting genotypes. Crop Science, 37(2), 311-326. doi: 10.2135/cropsci1997.0011183x003700020002x.##Golkari, S., Haghparast, R., Roohi, E., Mobasser, S., Ahmadi, M. M., Soleimani, K., Khalilzadeh, G., Abedi-Asl, G., & Babaei, T. (2016). Multi-environment evaluation of winter bread wheat genotypes under rainfed conditions of Iran-using AMMI model. Crop Breeding Journal, 6(2), 17-31. doi: 10.22092/cbj.2016.107104.##Grausgruber, H., Oberforster, M., Werteker, M., Ruckenbauer, P., & Vollmann, J. (2000). Stability of quality traits in Australian grown winter wheat. Field Crops Research, 66(3), 257-267. doi: 10.1016/s0378-4290(00)00079-4.##Hongyu K., Penña M. G., Araújo L. B., & Dias C. T. S. (2014). Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters, 51(2), 89-102. doi: 10.2478/bile-2014-0007.##Jafari, T., & Farshadfar, E. (2018). Stability analysis of bread wheat genotypes (Triticum aestivum L.) by GGE biplot. Cereal Research, 8(2), 199-208. [In Persian]. doi: 10.22124/c.2018.6232.1243.##Jalal Kamali, M. R., Najafi Mirak, T., & Asadi, H. (2012). Wheat: Research and Development Strategies in Iran. Nashr-e-Amoozesh Keshavarzi. 227 p. [In Persian].##Jambhulkar, N. N., Bose L. K., & Singh O. N. (2014). AMMI stability index for stability analysis. In: Mohapatra, T. (Eds.). CRRI Newsletter, volume 35(1), 15. Central Rice Research Institute, Cuttack, Orissa.##Javidfar, F., Alizadeh, B., Amiri Oghan, H., & Sabaghnia, N. (2010). A study of genotype by environment interaction in oilseed rape genotypes using GGE Biplot method. Iranian Journal of Field Crop Science, 41(4), 771-779. [In Persian]. dor: 20.1001.1.20084811.1389.41.4.13.8.##Karadavut, U., Palta, Ç., Kavurmaci, Z., & Bölek, U. (2010). Some grain yield parameters of multienvironmental trials in faba bean (Vicia faba) genotypes. International Journal of Agriculture & Biology, 12(2), 217-220.##Karimizadeh, R., Ghojogh, H., Hosseinpour, T., Armion, M., Shahbazi K., & Sharifi. P. (2021). Evaluating of the efficiency of AMMI and BLUP models and their integration for identifying high-yielding durum wheat (Triticum turgidum L. var. durum) genotypes adapted to warm rainfed regions of Iran. Iranian Journal of Crop Sciences, 23(1), 30-48. [In Persian]. dor: 20.1001.1.15625540.1400.23.1.3.7.##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., Armion, M., &, Sharifi, P. (2020). Stability analysis of durum wheat genotypes by GGE Biplot method. Journal of Crop Breeding12(35), 1-17. [In Persian]. doi: 10.52547/jcb.12.35.1.##Karimizadeh, R., Pezeshkpour, P., Mirzaee, A., Barzali, M., Sharifi, P., Khoshkhoy Nilash, E. A., Roshanravan, S., & Safari Motlagh, M. R. (2023). Identificationof stable chickpeas under dryland conditions by mixed models. Legume Science, 5(4), e206. doi: 10.1002/leg3.206.##Kempton, R. A. (1984). The use of biplot in interpreting variety by environment interaction. Journal of Agricultural Science (Cambridge), l22(4), 335-342. doi: 10.1017/s0021859600043392.##Khomari, A., Mostafavi, K., & Mohammadi, A. (2018). Evaluation of yield stability of winter barley varieties (Hordeum vulgare L.) using additive main effects and multiplicative interaction method. Journal of Crop Production, 11(2), 185-195. [In Persian]. doi: 10.22069/ejcp.2018.13567.2043.##Kroonenberg, P. M. (1995). Introduction to biplots for GE tables. Research Report No. 51. University of Queensland, Australia. 22 p. Retrieved from: https://hdl.handle.net/1887/11604.##Koutis, K., G. Mavromatis, A., Baxevanos, D., & Koutsika-Sotiriou, M. (2012). Multienvironmental evaluation of wheat landraces by GGE Biplot Analysis for organic breeding. Agricultural Sciences, 3(1), 66-74. doi: 10.4236/as.2012.31009.##Mahdavi, A. M., Babaian Jolodar, N. A., Farshadfar, E., & Bagheri, N. A. (2022). Investigation of grain yield stability of bread wheat genotypes using non-parametric univariate methods and GGE biplot model. Environmental Stresses in Agricultural Sciences, 15(2), 287-298. doi: 10.22077/escs.2020.3527.1871.##Makumbi, D., Diallo, A., Kanampiu, K., Mugo, S., & Karaya, H. (2015). Agronomic performance and genotype×environment interaction of herbicideresistant maize varieties in Eastern Africa. Crop Science, 55(4), 540-555. doi: 10.2135/cropsci2014.08.0593.##Maleia, M. P., Raimundo, A., Moiana, L. D., Teca, J. O., Chale, F., Jamal, E., Dentor, J. N., & Adamugy, B. A. (2017). Stability and adaptability of cotton (Gossypium hirsutum L.) genotypes based on AMMI analysis. Australian Journal of Crop Science, 11(04), 367-372. doi: 10.21475/ajcs.17.11.04.pne60.##Mohammadi, R., & Amri, A. (2013). Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica, 192, 227-249. https://doi.org/10.1007/s10681-012-0839-1.##Mohammadi, R., Armion, M., Sadeghzadeh, B., Golkari, S., Khalilzadeh, G., Ahmadi, H., Abedi-Asl, G., & Eskandari, M. (2016). Assessment of grain yield stability and adaptability of rainfed durum wheat breeding lines. Applied Field Crops Research, 29(4), 25-42. [In Persian]. doi: 10.22092/aj.2017.102141.1037.##Mostafavi, K., Hosseini Imeni S., & Firoozi, M. (2014). Stability analysis of grain yield in lines and cultivars of rice (Oriza sativa L.) using AMMI (Additive main effects and multiplicative interaction) Method. Iranian Journal of Field Crop Science, 45(3), 445 -452. [In Persian]. doi: 10.22059/IJFCS.2014.53540.##Najafi Mirak, T., Agaee Sarbarzeh, M., Moayedi, A., Kaffashi, A., & Sayahfar, M. (2021). Yield stability analysis of durum wheat genotypes using AMMI method. Journal of Agricultural Science & Sustainable Production, 31(2), 17-28. [In Persian]. doi: 10.22034/saps.2021.13087.##Olivoto, T. (2019). Metan: Multi environment trials analysis. R package version 1.1.0. Retrieved 24 June 2019, from: https://github.com/TiagoOlivoto/metan. doi: 10.1101/2020.01.14.906750.##Omrani, A., Omrani, S., Khodarahmi, M., Shojaei, S. H., Illés, Á., Bojtor, C., Mousavi, S. M. N., & Nagy, J. (2022). Evaluation of grain yield stability in some selected wheat genotypes using AMMI and GGE Biplot methods. Agronomy, 12, 1130, 1-14. doi: 10.3390/agronomy12051130.##Omrani, S., Mohammad Naji, A., & Esmaeilzadeh Moghaddam, M. (2017). Yield stability analysis of promising bread wheat lines in southern warm and dry agroclimatic zone of Iran using GGE biplot model. Journal of Crop Breeding, 23(9), 157-165. [In Persian]. doi: 10.29252/jcb.9.23.157.##Pouresmael, M., Kanouni, H., Hajihasani, M., Astraki, H., Mirakhorli, A., Nasrollahi, M., & Mozaffari, J. (2018). Stability of chickpea (Cicer arietinum L.) landraces in national plant gene bank of Iran for drylands. Journal of Agricultural Science & Technology, 20(2), 387-400. dor: 20.1001.1.16807073.2018.20.2.13.7.##Purchase, J. L., Hatting, H., & Van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat in South Africa: II. Stability analysis of yield performance. South African Journal of Plant & Soil, 17(3), 101-107. doi: 10.1080/02571862.2000.10634878.##Raju, B. M. K. (2002). A study on AMMI model and its biplots. Journal of the Indian Society of Agricultural Statistics, 55(3), 297-322.##Rao, A. R., & Prabhakaran, V. T. (2005). Use of AMMI in simultaneous selection of genotypes for yield and stability. Journal of the Indian Society of Agricultural Statistics, 59(1), 76-82.##Rodriguez, M., Rau, D., & Papa, R. (2007). Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica, 163, 231-247. doi: 10.1007/s10681-007-9635-8.##Roy, D. (2000). Plant Breeding: Analysis and Exploitation of Variation. Alpha Science International, UK. 701 p.##Sadeghzadeh Ahari, D., Hosseini, S. K., Hosseinpour, T., Jafarbay, J., Khalilzade, G., & Alizade Disaj, K. (2005). Staudy on adaptability and stability of grain yield in durum wheat lines in warm and semi-warm dryland areas. Seed & Plant Journal, 21(4), 561-576. [In Persian]. doi: 10.22092/spij.2017.110660.##Saeidnia, F., Taherian, M., & Nazeri, S. M. (2023). Graphical analysis of multi-environmental trials for wheat grain yield based on GGE-biplot analysis under diverse sowing dates. BMC Plant Biology, 23, 198. doi: 10.1186/s12870-023-04197-9.##Scapim, C. A., Oliveira, V. R., Braccini, A. L., Cruz, C. D., Andrade, C. A. B., & Vidigal. C. G. M. (2000). Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics & Molecular Biology, 23(2), 387-393. doi: 10.1590/s1415-47572000000200025.##Sneller, C. H., Kilgore-norquest, L., & Dombek, D. (1997). Repeatability of yield stability statistics in soybean. Crop Science, (2), 383-390. doi: 10.2135/cropsci1997.0011183x003700020013x.##Suresh, N., & Bishnoi, O. P. (2020). GGE Biplot based stability analysis of durum wheat genotypes using statistical package GGE Biplot GUI. International Journal of Agriculture, Environment & Biotechnology, 13(2), 149-153. doi: 10.30954/0974-1712.02.2020.5.##Taherian, M., Bihamta, M. R., Peyghambari, S. A., Alizadeh, H., & Rasoulnia, A. (2019). Stability analysis and selection of salinity tolerant barley genotypes. Journal of Crop Breeding, 11(29), 93-103. [In Persian]. dor: 20.1001.1.22286128.1398.11.29.7.3.##Tarakanovas, P., & Ruzgas, V. (2006). Additive main effect and multiplicative interaction analysis of grain yield of wheat varieties in Lithuania. Agronomy Research, 4(1), 91-98. doi: 10.4236/ajps.2023.144035.##Valizadeh, M., & Moghaddam, M. (2010). Experimental Designs in Agriculture. 4th Edition. Privar Publishers, Tabriz, Iran.##Yan, W. (2011). GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. Journal of Indian Society of Agricultural Statistics, 65, 181-193.##Yan, W. (2021). A systematic narration of some key concepts and procedures in plant breeding. Frontiers in Plant Science, 12, 724517. doi: 10.3389/fpls.2021.724517.##Yan, W., Cornelius, P. L., Crossa, J., & Hunt, L. A. (2001). Two type of GGE bipots for analyzing multi-environmental trial data. Crop Science, 41(3), 656-663. doi: 10.2135/cropsci2001.413656x.##Yan, W., & Hunt, L. A. (2001). Interpretation of genotype × environment interaction for winter wheat yield in Ontario. Crop Science, 41(1), 19-25. doi: 10.2135/cropsci2001.41119x.##Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega- environment investigation based on the GGE Biplot. Crop Science, 40(3), 597-605. doi: 10.2135/cropsci2000.403597x.##Yan, W., & Kang, M. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, FL, USA. doi: 10.1201/9781420040371.##Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype by environment data. Crop Science, 47(2), 643-655. doi: 10.2135/cropsci2006.06.0374.##Yan, W., Pageau, D., Frégeau-Reid, J. A., & Durand, J. (2011). Assessing the representativeness and repeatability of test locations for genotype evaluation. Crop Science, 51(4), 1603-1610. doi: 10.2135/cropsci2011.01.0016.##Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623-645. doi: 10.4141/P05-169.##Zali, H., Farshadfar, E., Sabaghpour, S. H., & Karimizadeh, R. (2012). Evaluation of genotype×environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research, 3(7), 3126-3136.##Zhang, Z., Lu C., & Xiang, Z. (1998). Analysis of variety stability based on AMMI model. Acta Agronomica Sinica, 24(3), 304-309. [In Chinese].##Zobel, R. W., Wright, A. J., & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. doi: 10.2134/agronj1988.00021962008000030002x.