مکان یابی QTL های مرتبط با ویژگی های ریشه و اندام هوایی برنج در لاین های نوترکیب حاصل از تلاقی عنبربو × سپیدرود تحت تنش خشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه گنبدکاووس، گنبدکاووس، ایران

2 دانشجوی کارشناسی ارشد، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

3 استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

4 دانشجوی کارشناسی، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

چکیده

به‌منظور شناسایی نواحی ژنومی مرتبط با تحمل به تنش خشکی با استفاده از روش تجزیه QTL، 96 لاین F8 مشتق از تلاقی بین دو رقم برنج ایرانی سپیدرود و عنبربو در مزرعه تحقیقاتی در منطقه آزاد شهر استان گلستان در سال زراعی 1390 کشت شدند. برای اعمال تنش خشکی از مرحله حداکثر پنجه­زنی تا زمان رسیدگی به فاصله 20 روز آبیاری انجام شد. نقشه پیوستگی با استفاده از 124 نشانگر ریزماهواره و 264 نشانگر AFLP در آزمایشگاه ژنتیک و اصلاح نباتات دانشگاه گنبد کاووس تهیه شد که 4/1950 سانتی­مورگان از ژنوم برنج را با متوسط فاصله 20/5 سانتی­مورگان بین نشانگرها پوشش داد. نتایج این مطالعه نشان داد که ناحیه­ای از کروموزوم 2 در فاصله E070-M140-1-E070-M150-13، کروموزوم 4 در فاصله E060-M160-3-RM1359 و کروموزوم 9 در فاصله E120-M140-9-E090-M140-14 کنترل چندین صفت را تحت شرایط تنش خشکی به عهده داشتند. این هم­مکانی QTLهای کنترل کننده چند صفت می­تواند نشان دهنده کنترل ژنتیکی یکسان آن­ها تحت شرایط تنش ­باشد. مکان­یابی QTLها نشان داد که QTLهای qDWRD-2a، qDWRD-4a، qRVD-2، qRVD-4a، qRND-2a، qRND-4a، qPND-2a، qPND-4، qPWD-2، qPWD-4، qSWD-2a، qSWD-4، qFRWD-2، qFRWD-4، و qPSPD-9 بزرگ اثر بودند و بیش از 20 درصد از تنوع فنوتیپی صفات را توجیه کردند. با توجه به اینکه این نواحی ژنومی سهم قابل توجهی از تغییرات فنوتیپی صفات را توجیه می­کنند، از این­رو پتانسیل استفاده از آن­ها در برنامه­های اصلاحی انتخاب به کمک نشانگر برای تحمل به خشکی پس از تعیین اعتبار آن­ها در جمعیت­های دیگر وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Mapping QTLs related to rice roots and shoots traits in recombinant lines derived from Anbarboo × Sepidroud under drought stress conditions

نویسندگان [English]

  • Hossein Sabouri 1
  • Sharifeh Mohammad Alegh 2
  • Abdollatif Gholizade 3
  • Jafar Gilaki 4
1 Assoc. Prof., Dept. of Plant Production, College of Agriculture Science and Natural Resources, Gonbad-e-Kavous University, Gonbad-e-Kavous, Iran
2 M. Sc. Student, Dept. of Plant Production, College of Agriculture Science and Natural Resources, Gonbad-e-Kavous University, Gonbad-e-Kavous, Iran
3 Assist. Prof., Dept. of Plant Production, College of Agriculture Science and Natural Resources, Gonbad-e-Kavous University, Gonbad-e-Kavous, Iran
4 B. Sc. Student, Dept. of Plant Production, College of Agriculture Science and Natural Resources, Gonbad-e-Kavous University, Gonbad-e-Kavous, Iran
چکیده [English]

To identify the genomic regions associated with drought stress tolerance using QTL analysis, 96 F8 lines derived from a cross between two varieties, Sepidroud and Anbarboo, were planted at a research field in Azadshahr region, Golestan Province, Iran, in 2011. To impose drought stress, irrigation interval was considered as 20 days from maximum tillering phase to maturity stage. The linkage map was constructed using 124 microsatellite markers and 264 AFLP markers at the laboratory of Genetics and Plant Breeding, Gonbad-e-Kavous University, Golestan, Iran, which covered 1950.4 cM of the rice genome with average distance of 5.20 cM between adjacent markers. In this study, regions of chromosome 2 at the interval of E070-M140-1-E070-M150-13, chromosome 4 at the interval of E060-M160-3-RM1359 and chromosome 9 at the interval of E120-M140-9-E090-M140-14 were identified that controlled several traits under drought stress conditions. Co-locating of the QTLs involved in control of traits can indicates same genetic controlling.  QTL mapping of traits indicated QTLs qRND-2a, qRND-4a, qRVD-2, qRVD-4a, qFRWD-2, qFRWD-4, qDWRD-2a, qSWD-2a, qSWD-4, qPWD-2, qPWD-4, qPND-2a, qPND-4 and qPSPD-9 had a large effect and more than 20% of the explanation of phenotypic variation, respectively. Considering that these genomic regions explained a significant part of phenotypic variation therefore those have potential for application in the breeding programs of Marker-assisted selection for drought tolerance after validation in other environments and populations.

کلیدواژه‌ها [English]

  • Linkage maps
  • Malecular markers
  • QTL analysis
Ahamadi, J., Fotokian, M. H. and Fabriki-Orang, S. 2008. Detection of QTLs influencing panicle length, grain number and grain sterility in rice (Oryza sativa L.). Journal of Crop Science and Biotechnology 11 (3): 163-170.##Ali, M. L., Pathan, M. S., Zhang, J., Bai, G., Sarkarung, S. and Nguyen, H. T. 2000. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theoretical and Applied Genetics 101: 756-766.##Armenta-Soto, J., Chang, T. T., Loresto, G. C. and O’Toole, J. C.  1983. Genetic analysis of root characteristics in rice. SABRAO Journal of Breeding and Genetics 15: 103-118.##Babu, R. C., Shashidhar, H. E., Lilley, J. M., Thanh, N. D., Ray, J. D., Sadasivam, S., Sarkarung, S., O’Toole J. C. and Nguyen, H. T. 2001. Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breeding 120: 233-238.##Babu, R. C., Nguyen, B. D., Chamarerk, V., Shanmugasundaram, P., Chezhian, P., Jeyaprakash, P., Ganesh, S. K., Palchamy, A., Sadasivam, S., Sarkarung, S., Wade, L. J. and Nguyen, H. T. 2003. Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Science 43: 1457-1469.##Byrne, P. F. and McMullen, M. D. 1996. Defining genes for agricultural traits: QTL analysis and the candidate gene approach. Probe 7 (1): 24-27.##Champoux, M. C., Wang, G., Sarkarung, S., Mackill, D. J., O’Toole, J. C., Huang, N. and McCouch, S. R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theoretical and Applied Genetics 90 (6): 969-981.##Chen, X., Temnykh, S., Xu, Y., Cho, Y. G. and McCouch, S. R. 1997. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theoretical and Applied Genetics 95: 553-567.##Clark, L. J., Price, A. H., Steele, K. A. and Whalley, W. R. 2008. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Functional Plant Biology 35: 1163-1171.##Courtois, B., Shen, L., Petalcorin, W., Carandang, S., Mauleon, R. and Li, Z. 2003. Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica 134: 335-345.##Ekanayake, I. J., O’Toole, J. C, Carrity, D. P. and Masajo, T. M. 1985. Inheritance of root characters and their relations to drought resistance in rice. Crop Science 25: 927-933.##Kamoshita, A., Zhang, J., Siopongco, J., Sarkarung, S., Nguyen, H. T. and Wade, L. J. 2002a. Effects of phenotyping environment on identification of QTL for rice root morphology under anaerobic conditions. Crop Science 42 (1): 255-265.##Kamoshita, A., Wade, L., Ali, M., Pathan, M., Zhang, J., Sarkarung, S. and Nguyen, H. 2002b. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theoretical and Applied Genetics 104: 880-893.##Kato, Y., Hirotsu, S., Nemoto, K. and Yamagishi, J. 2008. Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture. Euphytica 160: 423-430.##Khush, G. S. 1997. Origin, dispersal, cultivation and varation of rice. Plant Molecular Biology
35: 25-34.##Lafitte, H. R., Yongsheng, G., Yan, S. and Li, Z. K. 2007. Whole plant responses, key processes, and adaptation to drought stress: the case of rice. Journal of Experimental Botany 58: 169-175.##Liu, B. H. 1998. Statistical genomics, linkage, mapping and QTL analysis. CRC Press, New York, USA.##Mambani, B. and Lal, R. 1983. Response of upland rice varieties to drought stress. 1. Relation between the root system development and leaf water potential. Plant and Soil 73: 59-72.##Manly, K. F. and Olson, J. M. 1999. Overview of QTL mapping software and introduction to Map Manager QTX. Mammalian Genome 10: 327-334.##McCouch, S. R., Teytelman, L., Xu, Y. B., Lobos, K. B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z. K., Xing, Y. Z., Zhang, Q. F., Kono, I., Yano, M., Fjellstrom. R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D. and Stein, L. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9: 199-207.##Michael Gomez, S., Satheesh Kumar, S., Jeyaprakash, P., Suresh, R., Biji, K. R., Manikanda Boopathi, N., Price, A. H. and Babu, R. C. 2006. Mapping QTLs linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environment. Journal of Biochemistry and Biotechnology 2 (4): 161-169.##Nemoto, H. R., Suga, M. and Okutsu, Y. 1998. Deep rooted rice varieties detected through observation of root characteristics using the trench method. Breeding Science 48: 321-324.##Nelson, J. C. 1997. QGENE: Software for marker-based genomic analysis and breeding. Molecular Breeding 3 (3): 239-245.##Nguyen, D. T., Nguyen, T. K. L., Pham, Q. C., Tran, Q. T., Le, T. B. T. and Nguyen, H. T. 2006. Mapping QTLs associated with root traits related to drought resistance in Vietnamese upland rice. ASEAN Journal of Science and Technology for Development 23 (4): 323-332.##Nguyen, T. L. and Buu, C. B. 2010. Quantitative trait loci influencing drought tolerance in rice (Oryza sativa. L). Omonrice 17: 22-28.##Nicou, R., Seguy, L. and Haddad, G. 1970. Comparison of rooting in four upland rice varieties with and without soil tillage. Agronomy Tropopical 25: 639-659.##O’Toole, J. C. and Bland, W. L. 1987. Genotypic variation in crop plant root systems. Advanced Agronomy 41: 91-145.##O’Toole, J. C. and Soemartono, N. 1981. Evaluation of a simple technique for characterizing rice root systems in relation to drought resistance. Euphytica 30: 283-290.##Pflieger, S., Lefebvre, V. and Causse, M. 2001. The candidate gene approach in plant genetics: A review. Theoretical and Applied Genetics 7 (4): 275-291.##Price, A. H. and Tomos, A. D. 1997. Genetic dissection of root growth in rice (Oryza sativa L.) II: Mapping quantitative trait loci using molecular markers. Theoretical and Applied Genetics 95:143-152.##Price, A. H., Steele, K. A., Moore, B. J., Barraclough, P. B. and Clark, L. J. 2000. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theoretical and Applied Genetics 100: 49-56.##Rafalski, J. A., Vogel, J. M., Morgante, M., Powell, W., Andre, C. and Tingey, S. V. 1996. Generating and using DNA markers in plants. Nonmammalian Genome Analysis. A Practical Guide. Academic Press, San Diego.##Ray, J. D., Yu, L., McCouch, S. R., Wang, G. and Nguyen, H. T. 1996. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theoretical and Applied Genetics 92: 627-636.##Sabouri, H., Sabouri, A. and Khatami Nejad, R. 2012. Mapping QTLs linked to some traits related to drought strees in rice. Journal of Crop Production and Processing 119 :1-12. (In Persian with English Abstract).##Sabouri, H., Khanahmadi, A. R., Khataminejad, R., Jafarzadeh, M. R., Katouzi, M. and Moradzadeh, M. 2011. Introduction of rice drought tolerant variety in Gonbad Kavous region. Final report of research design, Collage of Agriculture Science and Natural Resources, Gonbad-e-Kavous University, Golestan, Iran. 78 p. (In Persian).##Saghai Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q. and Allard, R. W. 1994. Extraordinarily polymorphic microsatellites DNA in barely species diversity, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences U.S.A.
91: 5466-5570.##Sharma, S., Xu, S., Ehdaie, B., Hoops, A., Close, T. C. J., Lukaszewski, A. J. and Waines, J. G. 2011. Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theoretical and Applied Genetics 122: 759-769.##Takeda, S. and Matsuoka, M. 2008. Genetic approaches to crop improvement: Responding to environmental and population change. Nature 9: 444-457.##Themnykh, S. D., Park, N. A, Cartinnour, N. H., Lipovhch, L., Cho, Y. J., Ishii, T. and McCouch, S. R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza Sativa L.). Theoretical and Applied Genetics 100: 697-712.##Toorchi, M., Shashidhar, H. E, Sharma, N. and Hittalmani, S. 2002. Tagging QTLs for maximum root length in rainfed lowland rice (Oryza sativa L.) using molecular markers. Cellular and Molecular Biology Letter 7: 771-776.##Trachsel, S., Kaeppler, S. M., Brown, K. M. and Lynch, J. P. 2010. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil 341 (1-2): 75-87.##Venuprasad, R., Shashidhar, H. E., Hittalmani, S. and Hemamalini, G. S. 2002. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica 128: 293-300.##Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T .V. D., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.##Wang, J. 2009. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica 35: 3239-3245.##Xiao, J. H., Li, J. M., Yuan, L. P. and Tanksley, S. D. 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from subspecific rice cross. Theoretical and Applied Genetics 92: 230-244.##Yadav, R., Courtois, B., Huang, N. and McLaren, G. 1997. Mapping genes controlling root morphology and root distribution in a double-haploid population of rice. Theoretical and Applied Genetics 94: 619-632.##Yoshida, S. and Hasegawa, S. 1982. The rice root system: its development and function. In: Drought resistance in crops with emphasis on rice. International Rice Research Institute, Manila, Philippines.##Zheng, H. G., Babu, R. C., Pathanmd, M. S., Ali, L., Huang, N., Courtois, B. and Nguyen, H. T. 2000. Quantitative trait loci for root-penetration ability and root thickness in rice: Comparison of genetic backgrounds. Genome 43: 53-61.##Zheng B. S., Yang, L., Zhang, W. P., Mao, C. Z., Wu, Y. R., Yi, K. K., Liu, F. Y. and Wu, P. 2003. Mapping QTLs and candidate genes for rice root traits under different water supply conditions and comparative analysis across three populations. Theoretical and Applied Genetics 107: 1505-1515.