بررسی پایداری عملکرد لاین های امید بخش گندم نان با استفاده از روش های چندمتغیره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار پژوهش،موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 استادیار پژوهش، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس،سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

3 استادیار پژوهش، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

4 استادیار پژوهش، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی سیستان، سازمانتحقیقات، آمـوزش و ترویج کشاورزی، زابل، ایران

5 محقق فقید بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی بلوچستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایرانشهر، ایران

6 استادیار پژوهش، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم آباد، ایران

7 استادیار پژوهش، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی‌آباد دزفول، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران

8 استادیار پژوهش، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

چکیده

به­منظور مطالعه پایداری لاین‌های امید­بخش گندم نان، آزمایشی با تعداد ۱۶ لاین به­همراه دو رقم شاهد چمران و افلاک به­ مدت دو سال زراعی در شش ایستگاه تحقیقاتی در قالب طرح بلوک­های کامل تصادفیبا چهار تکرار انجام شد. نتایج تجزیه واریانس نشان داد کهبه­ترتیب 9/80، 2/3 و 9/15 درصد از کل تغییرات مربوط به اثر محیط، اثر ژنوتیپ و برهمکنش ژنوتیپ و محیط بود. نتایج مدلآثار اصلی جمع­پذیر و برهمکنش ضرب­پذیر(AMMI) نشان داد که چهار مولفه اصلی مدل AMMI معنی­دار بودند و 4/78 درصد از تغییرات برهمکنش ژنوتیپ × محیط را توجیه کردند. هم­چنین مدل AMMI1 نشان داد که لاین­های S-91-9، S-91-14، S-91-13و S-91-15 به­علت داشتن میانگین عملکرد بالاتر از میانگین کل، می­توانند به­عنوان ژنوتیپ­هایی با پایداری بیش­تر انتخاب شوند. بر مبنای مدل AMMI2، لاین S9-91-13 یکی از پایدارترین لاین­ها بود. مدل ضرب­پذیر تغییر­یافته (SHMM)که براساس آن محیط­های با حداقل اثر متقاطع در یک گروه قرار می­گیرند، محیط­های مورد مطالعه رابه سه گروه تفکیک کرد. گروه اول شاملداراب (هر دو سال)، ایرانشهر (سال اول)، خرم­آباد (هر دو سال) و دزفول (سال اول)،گروه دوم شامل دزفول (سال دوم)، اهواز (هر دو سال)، زابل (سال دوم) و ایرانشهر (سال دوم) و گروه سوم فقط شامل زابل (سال اول) بود. به­نظر می­رسد قرار گرفتن داراب و خرم­آباد در هر دو سال در یک گروه نشان­دهنده مشابهت نسبی این دو ایستگاه وحاکی از برهمکنش افزایشی یا غیر­کراس­اوری است. در مجموع، لاین­S-91-13 با داشتن عملکرد و پایداری عمومی بالا، لاین­ برتر این آزمایش بود که برای مطالعات تکمیلی جهت معرفی به­عنوان رقم تجاری جدید انتخاب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Yield stability evaluation of bread wheat promising lines using multivariate methods

نویسندگان [English]

  • Mohsen Esmaeilzadeh Moghaddam 1
  • Syrus Tahmasebi 2
  • Gholamabbas LotfaliAyeneh 3
  • Hosien Akbari Moghaddam 4
  • Khalil Mahmoudi 5
  • manoochehra sayyahfar 6
  • Seyed Mahmoud Tabib Ghaffari 7
  • Hassan Zali 8
1 Research Assoc. Prof.,Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Research Assist. Prof., Dept. ofSeed and Plant Improvement, Fars Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Darab,Iran
3 Research Assist. Prof.,Dept. ofSeed and Plant Improvement, Khoozestan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
4 Research Assist. Prof.,Dept. ofSeed and Plant Improvement, Sistan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Zabol, Iran
5 Researcher,Dept. of Seed and Plant Improvement, Baloochestan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Iranshahr, Iran
6 Research Assist. Prof.,Dept. of Seed and Plant Improvement, Lorestan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Khoramabad, Iran
7 Research Assist. Prof.,Dept. of Seed and Plant Improvement, Dezful Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, Iran
8 Research Assist. Prof.,Dept. of Seed and Plant Improvement, Fars Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Darab, Iran
چکیده [English]

To determine yield stability of 16 bread wheat promising lines along with two commercial check cultivars,Chamran and Aflak, were studied in six experimental field stations for two successive cropping seasons (2012-2014). The experiments were conducted using randomized complete block design (RCBD) with four replications. The analysis of variance showed that 80.9, 3.2 and 15.9 percent of total variation were related to the environment (E), genotype (G) and G×E interaction effects, respectively. The results of additive main effects and multiplicative interaction (AMMI) model showed that the first four principal componentsof AMMI were significant and described 78.4% of the variance of G×E interaction. The AMMI1 model analysis indicated that S-91-9, S-91-14, S-91-13 and S-91-15, with an average grain yield higher than total mean, were the most stable lines. Based on AMMI2 model, S-91-13 was the most stable line. The shifted multiplicative model (SHMM), classified the environments in three groups. The first group consisted of Darab (first and second years), Iranshahr (first year), Khorramabad (first and second years) and Dezful (first year), while Dezful (second year), Ahwaz (first and second years), Zabul (second year) and Iranshahr (second year) were classified in the second group andZabul (first year)was only into the third group.The presence of Darab and Khorramabad in the same group indicates the relative similarity of these stations and existence of an additive or non-crossover interaction. Finally, the S-91-13 line with high yield and broad adaptability was selected as superior line for further investigation to introduce the new commercial bread wheat cultivar.

کلیدواژه‌ها [English]

  • AMMI model
  • Biplot
  • SHMM model
  • Stability analysis
Aghaee-Sarbarzeh, M., Dastfal, M., Farzadi, H., Andarzian, B., Shahbazpour-Shahbazi, A., Bahari, M. and Rostami, H. 2012. Evaluation of durum wheat genotypes for yield and yield stability in warm and dry areas of Iran. Seed and Plant Improvement Journal 2: 315-325.
(In Persian with English Abstract).##Akbarpour, O., Dehghani, H., Sorkhi, B. and Gauch-Jr, H. G. 2014. Evaluation of genotype × environment interaction in barley (Hordeum vulgare L.) based on AMMI model using developed SAS program. Journal of Agricultural Science and Technology 16(4): 909-920.##Asgarinia, P., Saedi, G. A. and Rezaee, A. M. 2008. Pattern analysis of genotype by environment interaction ongrain yield in wheat using AMMI multivariate method. Electronic Journal of Crop Production 2(2): 75-90. (In Persian with English Abstract).##Crossa, J. and Cornelius, P. L. 1993. Recent developments in multiplicative models for cultivar trials. In: Buxton, D. R., Shibles, R., Forfberg, R. A., Blad, B. L., Asay, K. H., Paulsen, G. M. and Wilson, R. F. (Eds.).International Crop Science I.Crop Science Society of America, Madison, Wisconsin.pp: 571-577.##Cornelius, P. L., Seyedsadr, M. and Crossa, J. 1992. Using the shifted multiplicative model to search for "separability" in crop cultivar trials. Theoretical and Applied Genetics 84: 161-172.##Cornelius, P., Van-Sanford, D. A. and Seyedsadr, M. S. 1993. Clustering cultivars into groups without rank change interactions. Crop Science 33: 1193-1200.##Ebdon, J. S. and Gauch, H. G. 2002. AMMIanalysis of national turfgrass performancetrials. II. Cultivar recommendations. CropScience 42: 497-506.##Esmaeilzadeh-Moghaddam,M., Zakizadeh, M., Akbari-Moghaddam, H., Abedini-Esfahlani, M., Sayyahfar, M., Nikzad, A. R., Tabib-Ghaffari, S. M. and Lotfali-Aeineh, Gh. A. 2011. Study of grain yield stability and genotype-environment interaction in 20 bread wheat lines in warm and dry areas of south of Iran. Electronic Journal of Crop Production 3 (3): 179-200. (In Persian with English Abstract).##Fan, X. M., Kang, M. S., Chen, H., Zhang, Y., Tan, J. and. Xu, C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal 99: 220-228.##Farshadfar, E., Sabaghpour, S. H. and Zali, H.2012. Comparison of parametric and non‐parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crop Science 6: 514‐524.##Gauch, H. G. 1992. Statistical analysis of regional trials. AMMI analysis of factorial designs. Elsevier, Amsterdam, Netherlands. 287p.##Gauch, H.G. and Zobel, R.W.1996. AMMI analysis of yield trials. In: Kang M.S. and Gauch-Jr, H. G. (Eds.). Genotype by environment interaction. CRC Press, Boca Raton, New York.pp: 85-122.##Ghodrati-Niari, F. and Abdolshahi, R. 2014. Evaluation of yield stability of 40 bread wheat (Triticum aestivum L.) genotypesusing additive main effects and multiplicative interaction (AMMI). IranianJournal of Crop Science 16(4): 322-333.(In Persian with English Abstract).##Karimizadeh, R. and Mohammadi, M. 2015. Using SHHM model for clustering test environments oflentil in multi-environmental trials. Current Opinion in Agriculture 4(1): 33-37.##Kempton, R. A. 1984. The use of biplot in interpreting variety by environment interaction. CRC Press, Boca Raton, Florida.##Lucas, H. 2013. An international vision for wheat improvement. Wheat initiative report, May 2013. Available at: http://www.wheatinitiative.org.##Mohammadi, R., Armion, M., Sadeghzadeh, B., Golkari, S., Khalilzadeh, Gh., Ahmadi, H., Abedi-Asl, Gh. and Eskandari, M. 2016. Assessment of grain yield stability and adaptability of rainfed durum wheat breeding lines. Applied Field Crops Research 29 (4): 25-42. (In Persian with English Abstract).##Mondal, S., Singh, R.P., Mason, E.R., Huerta-Espino, J., Autrique, E. and Joshi, A. K. 2016. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in south Asia. Field Crops Research 192: 78-85.##Navabi, A., Yang, R., Helm, J. and Spaner, D. M. 2006. Can spring wheat-growing mega environments in the northern Great Plains be dissected for representative locations or niche adapted genotypes? Crop Science 46: 1107-1116.##Roostaei, M., Mohammadi, R. and Amri, A. 2014. Rank correlation among different statistical models in ranking of winter wheat genotypes.  The Crop Journal2: 154-163.##Rose, I. V. L. W., Das, M. K. and Taliaferro, C. M. 2008. A comparison of dry matter yield stability assessment methods for small numbers of genotypes of Bermuda grass. Euphytica 164: 19-25.##Sabaghnia, N., Sabaghpour, S. H. and Dehghani, H. 2008. The use of an AMMI model and its parameters to analyze yield stability in multi-environment trials. The Journal of Agricultural Science 146(5): 571-581.##Safavi, S. M. and Bahraminejad, S. 2013. The evaluation of genotype × environment interactions for grain yield of oat genotypes using AMMI model. Journal of Crop Breeding 9 (22): 125-132. (In Persian with English Abstract).##Samonte, S. O. P. B., Wilson, L. T., McClung, A. M. and Medley, J. C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Science
45: 2414-2424.##Seyedsadr, M. and Cornelius, P. L. 1992. Shifted multiplicative model for nonadditive two-way tables. Communications in Statistics - Simulation and Computation 21: 807-822.##Shahmohammadi, M., Dehghani, H. and Yousefi, A. 2005. Stability analysis of barley (Hordeum vulgare L.) genotypes in regional trial in cold zone. Journal of Science and Technology of Agriculture and Natural Resources 9(1): 143-155. (In Persian with English Abstract).##Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A. and Abbasian, A. 2017. Evaluation of genotype × environment interaction in rice based on AMMI model in Iran. Rice Science 24(3):173-180.##Shariftabar, M. M., Esmaeilzadeh-Moghaddam, M., Khodarahmi, M. and Bozorghipoor R. A. 2015. Study of grain yield stability and relations among some agronomic traits in durum wheat genotypes. Journal of Crop Production and Processing 4 (14): 111-121.##Threthowan, R. M., Ginkel, M. V., Ammar, K., Crossa, J., Payne, T. S., Cukadar, B., Rajaram, S. and Hernandez, E. 2003. Associations among twenty years of international bread wheat yield evaluation environments. Crop Science 43: 1698-1711.##Yan, W., Hunt, L.A., Sheny, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40: 597-605.##Yan, W. and Kang, M. S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists and agronomists. CRC Press, Boca Raton, FL.##Zali, H., Farshadfar, E., Sabaghpour, S. H. and Karimizadeh, R. 2012. Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research 3 (7): 3126-3136.##Zali, H., Sofalian, O., Hasanloo, T. and Asghari,A. 2016. Evaluation of yield stability and drought tolerance based AMMI and GGE biplot analysis in Brassica napus L. Agricultural Communication 4(1): 1-8.