مکان‌یابی و بررسی برهمکنش بین جایگاه های ژنومی کنترل کننده صفات مهم زراعی در برنج (Oryza sativa L.)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد،ایران

2 استاد،گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد،ایران

3 استادیار پژوهش، موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت،ایران

4 دانشیار،گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

به­ منظور شناسایی QTLهای اصلی و اپیستاتیک و برهمکنش آن­ها با محیط برای برخی صفات مهم زراعی برنج، تعداد 242 لاین خالص نوترکیب از دو جمعیت نسل F6حاصل از تلاقی IR67017-180-2-1-2 / علی‌کاظمی (جمعیتIRA) و صالح / علی‌کاظمی (جمعیتSA) در دو منطقه مورد ارزیابی قرار گرفتند. نقشه پیوستگی دو جمعیت با استفاده از 87 نشانگر ریزماهواره (SSR)، 1356 سانتی­مورگان از ژنوم برنج را با فاصله متوسط 58/15سانتی­مورگان بین نشانگر‌ها پوشش داد. در مجموع بیست QTL اصلی و 33 QTL اپیستاتیک با آثار مثبت و منفی شناسایی شدند. تعداد پنج QTLاصلی و پنج QTL اپیستاتیک دارای برهمکنش معنی­دار با محیط بودند و هشت QTLاصل یوده QTLاپیستاتیک کنترل کننده صفات زراعی مطلوب شناسایی شدند که هیچ­گونه برهمکنش معنی­داری با محیط نداشتند. اینQTLها شامل: دوQTL اصلی و دو QTL اپیستاتیک برای کاهش ارتفاع بوته، سه QTLاصلی و سه QTL اپیستاتیک برای کاهش تاریخ خوشه­ دهی، یک  QTLاصلی و یک QTL اپیستاتیک برای افزایش طول خوشه و دو QTL اصلی و چهارQTL اپیستاتیک برای افزایش عملکرد دانه بودند که بین 12/11 درصد (qHD6 ) تا 5/24 درصد (qGY1) از تنوع فنوتیپی صفات مربوطه را توجیهکردند. بنابراین، از این QTLهای مطلوب می­توان در برنامه هرمی کردن ژن­ها برای بهبود صفات مورد مطالعه استفاده کرد. همچنین، شش نشانگر پیوسته (RM421، RM178، RM3441، RM5101، RM7551 و RM5302) با فاصله کم­تر از پنج سانتی­ مورگان با این QTLها شناسایی شدند که می­توان از آن­ها در برنامه­های­ انتخاب به­کمک نشانگر به ­منظور به ­نژادی لاین­های برنج برای صفات مطلوب در نسل­های در حال تفکیک استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Mapping and evaluating interaction effects between genomic regions controlling important agronomic traits in rice (Oryza sativa L.)

نویسندگان [English]

  • Hossein rahimsoroush 1
  • Farhad Nazarian Firouzabadi 2
  • Maryam Hosseini Chaleshtori 3
  • Ahmad Esmaeili 4
  • Ali Akbar Ebadi 3
1 Ph.D. Student, Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
2 Prof., Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
3 Research Assist. Prof., Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
4 Assoc. Prof., Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
چکیده [English]

To detect main and epistatic QTLs and their environmental interactions for rice important agronomic traits, 242 recombinant inbred lines (RIL) from two F6 rice populations derived from crosses between Alikazemi / IR67017-180-2-1-2 (IRA population) and Ali Kakami / Saleh (SA) cultivars were evaluated in two locations. Results of the present experiment showed that the linkage map of the two populations using 87 polymorph microsatellite markers (SSR) covered 1356.0 cM of rice genome with an average distance of 15.58 cM between two markers. A total of 20 main QTLs (M-QTLs) and 33 epistatic QTLs (E-QTLs) were identified with positive and negative effects. Five M-QTLs and five E-QTLs had a significant interaction with the environment. Eight M-QTLs and ten E-QTLs with significant effect on agronomic traits were stable and did not have any significant interaction with the environment. These QTLs include two M-QTLs and two E-QTLs for reducing plant height, three M-QTLs and three E-QTLs for decreasing heading date, an M-QTL and an E-QTL for increasing panicle length and two M-QTLs and four E-QTLs to increase grain yield. These main QTLs explained 11.12% (qHD6) and 24.5% (qGY1) phenotypic variation, respectively. Therefore, such useful QTLs can be used for gene pyramiding programs to improve rice agronomical traits. Furthermore, six linked SSR markers (RM421, RM178, RM3441, RM5101, RM7551 and RM5302) were identified with less than 5 cM distance from important QTLs, suggesting that such SSR markers can be used in marker-assisted selection to select rice lines with desirable traits in segregation generations.

کلیدواژه‌ها [English]

  • Epistasis
  • Grain yield
  • Linkage map
  • Recombinant inbred lines
Amiri Fahliani, R., Khodambashi, M., Hoshmand, S. and Maesomiasl, A. 2014. Heritability of some morphological and qualitative traits of rice and identification of their related quantitative trait loci (QTLs) using microsatellite marker. Journal of Plant andSeed Breeding 30: 419-440. (In Persian with English Abstract).##Benmoussa, M., Achouch, A. and Zhu, J. 2006. QTL analysis for yield components in rice (Oryza sativa L.) under different environments. Journal of Central European Agriculture 6: 317-322.##Cao, G., Zhu, J., He, C., Gao, Y., Yan, J. and Wu, P. 2001. Impact of epistasis and QTL× environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theoretical and Applied Genetics 103: 153-160.##Chaudhari, P.R., Mishra, D., Koutu, G., Xalxo, S.S., Saxena, R.R., Singh, L. and Verulkar, S. 2018. Identification and mapping of QTLs for agronomic traits in recombinant inbred line population derived from Japonica X Indica sub-species in Rice (Oryza sativa L.). Journal of Pharmacognosy Phytochemistry 7: 2701-2704.##Chaudhary, R.C. 1996. Standard evaluation system for rice. International Rice Research Institute, Manila, Philippines.##Chen, J., Li, X., Cheng, C., Wang, Y., Qin, M., Zhu, H., Zeng, R., Fu, X., Liu, Z. and Zhang, G. 2014. Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Scientific Reports 4: 4263.##Cheng, L., Xu, Q., Zheng, T., Ye, G., Luo, C., Xu, J. and Li, Z. 2013. Identification of stably expressed quantitative trait loci for grain yield and protein content using recombinant inbred line and reciprocal introgression line populations in rice. Crop Science 53: 1437-1446.##Deshmukh, R., Singh, A., Jain, N., Anand, S., Gacche, R., Singh, A., Gaikwad, K., Sharma, T., Mohapatra, T. and Singh, N. 2010. Identification of candidate genes for grain number in rice (Oryza sativa L.). Functional and Integrative Genomics 10: 339-347.##Fu, Q., Zhang, P., Tan, L., Zhu, Z., Ma, D., Fu, Y., Zhan, X., Cai, H. and Sun, C. 2010. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). Journal of Genetics and Genomics 37: 147-157.##Guo, L., Xing, Y.Z., Mei, H., Xu, C., Shi, C., Wu, P. and Luo, L. 2005. Dissection of component QTL expression in yield formation in rice. Plant Breeding 124: 127-132.##Hosseini Chaloshtari, M., Houshmand, S., Mohammadi, S., Tarang, A., Khoddambashi, M. and Soroush, H.R. 2012. Mapping quantitative trait loci for plant height, heading time, growth duration and grain yield in two advanced back cross populations of rice. Iranian Journal of Crop Sciences 14 (3): 235-249.##Hosseini Chaleshtari, M., Rahimsourosh, H. and Houshmand, S. 2014. Estimation of epistasis and environmental effects to control of rice yield over four years. 13thIranian Crop Science Congress and3rdIranian Seed Science Conference, August 26-28, Karaj, Iran.##Khush, G.S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology 59: 1-6.##Kwon, S.-J., Cho, Y.-C., Kwon, S.-W., Oh, C.-S., Suh, J.-P., Shin, Y.-S., Kim, Y.-G., Holligan, D., Wessler, S.R. and Hwang, H.-G. 2008. QTL mapping of agronomic traits using an RIL population derived from a cross between temperate japonica cultivars in rice (Oryza sativa L.). Breeding Science 58: 271-279.##Li-Jun, Z., Jiang, L., Xi, L., Hong, C., Liang-Ming, C., Shi-Jia, L. and Jian-Min, W. 2009. Mapping and interaction of QTLs for thousand-grain weight and percentage of grains with chalkiness in rice. Acta Agronomica Sinica 35: 255-261.##Li, Z.-K., Yu, S.-B., Lafitte, H., Huang, N., Courtois, B., Hittalmani, S., Vijayakumar, C., Liu, G., Wang, G. and Shashidhar, H. 2003. QTL× environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics 108: 141-153.##Liao, C., Wu, P., Hu, B. and Yi, K. 2001. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theoretical and Applied Genetics 103: 104-111.##Lin, H., Liang, Z.-W., Sasaki, T. and Yano, M. 2003. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breeding Science 53: 51-59.##Lin, Y.-R., Wu, S.-C., Chen, S.-E., Tseng, T.-H., Chen, C.-S., Kuo, S.-C., Wu, H.-P. and Hsing, Y.-I.C. 2011. Mapping of quantitative trait loci for plant height and heading date in two inter-subspecific crosses of rice and comparison across Oryza genus. Bot Stud 52: 1-14.##Liu, G., Yang, J., Xu, H. and Zhu, J. 2007. Influence of epistasis and QTL× environment interaction on heading date of rice (Oryza sativa L.). Journal of Genetics and Genomics 34: 608-615.##Liu, L., Yan, X., Jiang, L., Zhang, W., Wang, M., Zhou, S., Shen, Y., Shen, Y., Liu, S. and Chen, L. 2008. Identification of stably expressed quantitative trait loci for cooked rice elongation in non-Basmati varieties. Genome 51: 104-112.##Liu, T., Yu, T. and Xing, Y. 2013. Identification and validation of a yield-enhancing QTL cluster in rice (Oryza sativa L.). Euphytica 192: 145-153.##Liu, Y., Chen, L., Fu, D., Lou, Q., Mei, H., Xiong, L., Li, M., Xu, X., Mei, X. and Luo, L. 2014. Dissection of additive, epistatic effect and QTL× environment interaction of quantitative trait loci for sheath blight resistance in rice. Hereditas 151: 28-37.##Lu, X.-L., Niu, A.-L., Cai, H.-Y., Zhao, Y., Liu, J.-W., Zhu, Y.-G. and Zhang, Z.-H. 2007. Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice. Plant Science 172: 212-220.##Manly, K.F., Cudmore Jr, R.H. and Meer, J.M. 2001. Map Manager QTX.Cross-platform software for genetic mapping. Mammalian Genome 12: 930-932.##McCouch, S.R., Teytelman, L., Xu, Y., Lobos, K.B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z. and Xing, Y. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9: 199-207.##Mei, H., Li, Z., Shu, Q., Guo, L., Wang, Y., Yu, X., Ying, C. and Luo, L. 2005. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theoretical and Applied Genetics 110: 649-659.##Mei, H.W., Luo, L.J., Ying, C.S., Wang, Y.P., Yu, X.Q., Guo, L.B., Paterson, A.H. and Li, Z.K. 2003. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theoretical and Applied Genetics 107: 89-101.##Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321-4326.##Nonoue, Y., Fujino, K., Hirayama, Y., Yamanouchi, U., Lin, S. and Yano, M. 2008. Detection of quantitative trait loci controlling extremely early heading in rice. Theoretical and Applied Genetics 116: 715-722.##Qu, Y., Mu, P., Zhang, H., Chen, C.Y., Gao, Y., Tian, Y., Wen, F. and Li, Z. 2008. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133: 187-200.##Rabiei, B. 2007. Linkage map of SSR markers and QTLs detection for heading date of Iranian rice cultivars. Journal of Agricultural Science and Technology 9: 235-242.##Rabiei, B., Kordrostami, M., Sabouri, A. and Sabouri, H. 2015. Identification of QTLs for yield related traits in Indica type rice using SSR and AFLP markers. Agriculturae Conspectus Scientificus 80: 91-99.##Rabiei, B., Masaeli, M. and Tarang, A. L. 2013. Identification of QTLs for grain yield and yield component in rice (Oryza sativa L.). Iranian Journal of Crop Sciences 44: 293-304 (In Persian with English Abstract).##Rabiei, B. and Sabouri, H. 2008. Mapping genes controlling quantitative traits. University of Guilan Press. (In Persian).##Rahimi, M., Rabiei, B., Dehghani, H. and Tarang, A.R. 2013. Mapping main and epistatic QTLs for drought tolerance indices in F5 population of rice. New Genetic Journal 4: 435-448. (In Persian with English Abstract).##Sabouri, H., Sabouri, A. and Dadras, A.R. 2009. Genetic dissection of biomass production, harvest index and panicle characteristics in indica-indica crosses of Iranian rice (Oryza sativa L.) cultivars. Australian Journal of Crop Science 3 (3): 155-166.##Satagopan, J.M., Yandell, B.S., Newton, M.A. and Osborn, T.C. 1996. A bayesian approach to detect quantitative trait loci using Markov Chain Monte Carlo. Genetics 144: 805-816.##Shen, G., Zhan, W., Chen, H. and Xing, Y. 2014. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Science 215: 11-18.##Sheykhpour, A.M., Rabiei, B. and Shirzadian, K.R. 2013. Identification of QTLS linked to plant height and maturity time in rice. Iranian Journal of Crop Sciences 15: 107-120. (In Persian with English Abstract).##Singh, R., Gautam, P., Saxena, S. and Singh, S. 2000. Scented rice germplasm: Conservation,evaluationandutilization.In:Singh,U.S.(Ed.).Aromaticrices.OxfordIBH,NewDelhi.pp:107-133.##Soroush, H., Eshraghi, A., Salehi, M.M., Ali, A.J., Nahvi, M., Allahgholipour, M., Erfani, A., Tarang, A. R., Eghlidi, A. and Padasht, F. 2005. Kadous: An aromatic, high-yielding variety with good cooking quality. International Rice Research Notes 30: 16.##Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T. and McCouch, S.R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics 100: 697-712.##Thomson, M., Tai, T., McClung, A., Lai, X., Hinga, M., Lobos, K., Xu, Y., Martinez, C. and McCouch, S.R. 2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics 107: 479-493.##Wang, C., Rutledge, J. and Gianola, D. 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution 26: 91-115.##Wang, D., Zhu, J., Li, Z. and Paterson, A. 1999. Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theoretical and Applied Genetics 99: 1255-1264.##Wang, L., Wang, A., Huang, X., Zhao, Q., Dong, G., Qian, Q., Sang, T. and Han, B. 2011. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theoretical and Applied Genetics 122: 327-340.##Wang, P., Zhou, G., Cui, K., Li, Z. and Yu, S. 2012. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Molecular Breeding 29: 99-113.##Wang, X., Jin, L., Zhu, H., Wang, S., Zhang, G. and Liu, G. 2018. QTL epistatic analysis for yield components with single‐segment substitution lines in rice. Plant Breeding 137: 346-354.##Wang, X., Pang, Y., Zhang, J., Zhang, Q., Tao, Y., Feng, B., Zheng, T., Xu, J. and Li, Z. 2014. Genetic background effects on QTL and QTL× environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. The Crop Journal 2: 345-357.##Wang, Y., Zang, J., Sun, Y., Ali, J., Xu, J. and Li, Z. 2013. Background-independent quantitative trait loci for drought tolerance identified using advanced backcross introgression lines in rice. Crop Science 53: 430-441.##Xie, X., Jin, F., Song, M.-H., Suh, J.-P., Hwang, H.-G., Kim, Y.-G., McCouch, S.R. and Ahn, S.-N. 2008. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa× O. rufipogon cross. Theoretical and Applied Genetics 116: 613-622.##Xing, Y., Tan, Y., Hua, J., Sun, X., Xu, C. and Zhang, Q. 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics 105: 248-257.##Yan, W.-H., Wang, P., Chen, H.-X., Zhou, H.-J., Li, Q.-P., Wang, C.-R., Ding, Z.-H., Zhang, Y.-S., Yu, S.-B. and Xing, Y.-Z. 2011. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant 4: 319-330.##Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X. and Zhu, J. 2008. QTLNetwork: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24: 721-723.##Yang, J. and Zhu, J. 2005. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics 110: 1268-1274.##Yano, M. and Sasaki, T. 1997. Genetic and molecular dissection of quantitative traits in rice. In: Sasaki, T. and Moore, G. (Eds.). Oryza: From molecule to plant. Springer, Dordrecht. pp: 145-153.##Ye, Z., Wang, J., Liu, Q., Zhang, M., Zou, K. and Fu, X. 2009. Genetic relationships among panicle characteristics of rice (Oryza sativa L.) using unconditional and conditional QTL analyses. Journal of Plant Biology 52: 259-267.##You, A., Lu, X., Jin, H., Ren, X., Liu, K., Yang, G., Yang, H., Zhu, L. and He, G. 2006. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics 172: 1287-1300.##Zhang, J., Ou, X., Hu, H., Du, B., Lv, W., Yang, L., Xing, D., Xu, J., Qiu, X. and Zheng, T. 2018. Identification of QTLs for yield-related traits using two sets of introgression lines with a common donor parent in rice. International Journal of Agriculture and Biology 20: 15-24.##Zhang, Q. and Wing, R.A. 2013. Genetics and genomics of rice. Vol. 5. Springer Science and Business  Media.##Zhao, J., Jiang, K., Yang, L., Yang, Q., Wan, X., Cao, Y., You, S., Luo, J., Zhang, T. and Zheng, J. 2013. QTL mapping for yield related components in a RIL population of rice. Chinese Journal of Rice Science 27: 344-352.##Zhao, X., Qin, Y., Jia, B., Kim, S.-M., Lee, H.-S., Eun, M.-Y., Kim, K.-M. and Sohn, J.-K. 2010. Comparison and analysis of main effects, epistatic effects, and QTL× environment interactions of QTLs for agronomic traits using DH and RILs populations in rice. Journal of Crop Science and Biotechnology 13: 235-241.##Zhu, M., Liu, D., Liu, W., Li, D., Liao, Y., Li, J., Fu, C., Fu, F., Huang, H. and Zeng, X. 2017. QTL mapping using an ultra-high-density SNP map reveals a major locus for grain yield in an elite rice restorer R998. Scientific Reports 7: 10914.##Zhuang, J.-Y., Fan, Y.-Y., Rao, Z.-M., Wu, J.-L., Xia, Y.-W. and Zheng, K.-L. 2002. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theoretical and Applied Genetics 105: 1137-1145.