پایداری عملکرد دانه هیبریدهای امیدبخش ذرت (Zea mays L.) در مناطق مختلف کشور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی تولید و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌اللملی امام خمینی، قزوین، ایران

2 استادیار پژوهش، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 استادیار، گروه مهندسی تولید و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌اللملی امام خمینی، قزوین، ایران

4 استادیار گروه مهندسی تولید و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌اللملی امام خمینی، قزوین، ایران

10.22124/cr.2020.14791.1529

چکیده

به­منظوربررسیپاسخ هیبریدهای جدید ذرت دانه‌ای نسبتبه شرایط محیطی متفاوت و تعیین پایداری عملکرد دانه آن­ها، آزمایشی بااستفادهاز هشت هیبریدذرت دانه­ایدرقالبطرحبلوک­هایکامل تصادفیباسهتکرار در شش منطقه در سال 1396 اجراشد. باتوجهبهمعنی­داربودنبرهمکنش هیبرید×محیط،تجزیهپایداریبا استفادهازدو روش چندمتغیره AMMI و GGE-biplot انجامشد. نتایج ﻣﺪل AMMI نشان داد که فقط ﻣوﻟﻔﻪ اﺻﻠﻰ اول (AMMI1) ﻣﻌﻨﻰدار بود و 52/72 درﺻﺪ از ﺗﻐﻴﻴﺮات برهمکنش ژﻧﻮﺗﻴﭗ × ﻣﺤﻴﻂ را ﺗﻮﺟﻴﻪ کرد. بر اساس آمارههای ﻣﺪل AMMI (SPCA1 و ASV)، هیبریدﻫﺎی ﺷﻤﺎره 1 (SC715B) و5 (SC706) ﺑﻪﻋﻨﻮان هیبریدهای ﺑﺎ ﭘﺎﻳﺪاری بالاﺗﺮ اﻧﺘﺨﺎب ﺷدﻧﺪ. نتایج تجزیه پایداری با روش GGE biplot نشان داد که 32/83 درصد از کل تغییرات عملکرد دانه با دو مولفه اول و دوم GGE-biplot توجیه می­شود و هیبریدﻫﺎی ﺷﻤﺎره 1 (SC715B) و7 (SC703) ﺑﻪﻋﻨﻮان هیبریدﻫﺎی ﺑﺎ ﭘﺎﻳﺪاری بالاتر اﻧﺘﺨﺎب ﺷدﻧﺪ.به­طور کلی، بر اساس عملکرد دانه و نتایج تجزیه پایداری با این­دو روش، هیبریدهای شماره 7 (SC703) و 1 (SC715B) به­ترتیب با عملکرد دانه 16/13 و 82/12 تن در هکتار به­عنوان پایدارترین و پرمحصول‌ترین هیبریدها شناسایی شدند و با سازگاری عمومی بالا می­توانند در مناطق مختلف کشور کشت شوند. ﺑﺮرﺳﻰ ﺑﺎیﭘﻼت ﻫﻤﺒﺴﺘﮕﻰ ﺑﻴﻦ ﻣﻨﺎﻃﻖ مختلف ﻧﺸﺎن داد ﻛﻪ ﺑﺮدارﻫﺎی ﻣﺤﻴﻄﻰ مغان، شیراز و کرمان و نیز مناطق کرمانشاه، قائم‌شهر و کرج بسیار نزدیک به­هم بودند و در رتبه­بندی هیبریدها، یکسان و مشابه عمل کردند. با توجه قدرت تفکیک بالای هیبریدها در مناطق شیراز، کرمان، کرج و قائم‌شهر، توصیه می‌شود جهت صرفه‌جویی در هزینه آزمایش‌ها در سال‌های بعد، آزمایش‌ها به جای شش منطقه در این چهار منطقه انجام شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Grain yield stability of promising grain maize (Zea mays L.) hybrids in different regions of Iran

نویسندگان [English]

  • Mojtaba Joekar 1
  • Mohammadreza Shiri 2
  • Raheleh Khademian 3
  • Roghayeh Aminian 4
1 M. Sc. Student, Dept. of Plant Production and Breeding Engineering, Faculty of Agriculture and Natural Resources, International University of Imam Khomeini, Qazvin, Iran
2 Research Assist. Prof., Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
3 Assist. Prof., Dept. of Plant Production and Breeding Engineering, Faculty of Agriculture and Natural Resources, International University of Imam Khomeini, Qazvin, Iran
4 Assist. Prof., Dept. of Plant Production and Breeding Engineering, Faculty of Agriculture and Natural Resources, International University of Imam Khomeini, Qazvin, Iran
چکیده [English]

To investigate the response of new maize hybrids to different environmental conditions and determine their grain yield stability, an experiment was conducted using eight maize hybrids in a randomized complete block design with three replications in six locations in 2016. Due to the significant hybrid × environment (G × E) interaction, stability analysis was performed using two multivariate methods, AMMI and GGE-biplot. The results of the AMMI model showed that only the first principal component (AMMI1) was significant and accounted for 72.52% of the G×E variation. Based on AMMI model statistics (SPCA1 and ASV), the hybrids No. 1 ( KSC715B) and 5 (KSC706) were selected as the highest stable hybrids. The results of stability anlaysis by GGE-biplot procedure showed that 83.32% of the total grain yield variation was explained by the first and second component of GGE-biplot and the hybrids No. 1 (SC715B) and 7 (SC703) were identified as the hybrids with higher stability. In total, based on grain yield and the results of stability analysis using these two methods, the hybrids No. 7 (SC703) and 1 (SC715B) with grain yield of 13.16 and 12.82 t/ha, respectively, were identified as the most stable hybrids with most high yielding and due to high general adaptability, cab be cultivated in different regions of Iran. Also, biplot of correlation among environments revealed that Moghan, Shiraz and Kerman as well as Ghaemshahr, Kermanshah and Karaj, were very close to each other and were similar in ranking the studied hybrids. Considering high dicreament power of hybrids in Shiraz, Kerman, Karaj and Ghaemshahr regions and in order to save the costs of future experiments, it is recomanded that the experiments be carried out in these four regions instead of six.

کلیدواژه‌ها [English]

  • AMMI
  • GGE-biplot
  • graphical
  • Adaptability
Albert, M. J. A. 2004. A comparison of statistical methods to describe genotype×environment interactionand yield stability in multi-location maize trials. M. Sc. Dissertation, Department of Plant Science, The University of the Free State, Bloemfontein.##Basafa, M. and Taheriyan, M. 2016. Analysis of stability and adoptability of forage yield among silage corn hybrids. JournalofCropBreeding 8 (19): 185-191. (In Persian with English Abstract).##Božović, D., Zivanović, T., Popović, V., Tatić, M., Gospavić, Z., Miloradović, Z., Stanković, G. and Dokić, M. 2018. Assessment stability of maize lines yield by GGE-biplot analysis. Genetika 50: 755-770.##Branković-Radojĉić, D., Vojka Babić, Z. G., Ţivanović, A. R., Filipović, M. and Srdić, J. 2018. Evaluation of maize grain yield and yield stability by AMMI analysis. Genetika 50 (3): 1067-1080.##Choukan, R. 2011. Genotype, environment and genotype×environment interaction effects on the performance of maize (Zea mays L.) inbred lines. Crop Breeding Journal 1 (2): 97-103.##Ebdon, J. S. and Gauch, H. G. 2002. Additive main effect and multiplicative interaction analysis ofnationalturf grassperformance trials: Interpretation of genotype×environment interaction. Crop Science 42: 489-496.##Fan, X. M., Kang, M. S., Chen, H., Zhang, Y., Tan, J. and Xu, C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal 99: 220-228.##Flores, F., Moreno M. T. and Cubero, J. I. 1998. A Comparison of univariate and multivariate methods to analyze G×E interaction. Field Crops Research 56: 271-286.##Gauch, H. G. 1992. Statistical analysis of regional trials. AMMI analysis of factorial designs. Elsevier, Amsterdam, Netherlands. 287 p.##Gauch, H. G. and Zobel, R. W. 1997. Identifying mega-environments and targeting genotypes. Crop Science 37: 311-326.##Jandong, E. A., Uguru, M. I. and Oyiga, B. C. 2011. Determination of yield stability of soybean genotypes across diverse soil pH levels. Journal of Applied Biosciences 43: 2924-2941.##Kaya, Y., Akcura, M. and Taner, S. 2006. GGE-biplot analysis of multi-environment yield trials in bread wheat. Turkish Journal of Agriculture and Foresty 30: 325-337.##Koocheki A. R., Sorkhilaleloo B. and Eslamzadeh Hesari M. R. 2012. Yield stability of barley elite genotypes in cold regions of Iran using GGE biplot. Seed and Plant Improvement Journal 28-1 (4): 533-543. (In Persian with English Abstract).##Mohammadi, R. and Amri, A. 2008. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica 159 (3): 419-432.##Mohammadi, R., Armion, M., Zadhasan, E., Ahmadi, M. M. and Sadeghzadeh Ahari, D.
2012.
Genotype×environment interaction for grain yield of rainfed durum wheat using the
GGE bipot model. Seed and Plant Improvement Journal 28-1 (3): 503-518. (In Persian with English Abstract).##Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-al-Hosseini, M., Taheri, M. and Mahlooji, M. 2014. GGE-biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultral Science and Technology 16: 609-622.##Najafi Mirak, T. 2011. Study of grain yield stability of bread wheat genotypes in cold agro-climatic zone of Iran. Iranian Journal of Crop Science 13 (2): 380-394. (In Persian with English Abstract).##Pourdad, S. S. and Jamshid Moghaddam, M. 2013. Study on genotype ×environment interaction through GGE biplot for seed yield in spring rapeseed (Brassica Napus L.) in rain-fed condition. Journal of Crop Breeding 5 (12): 1-14. (In Persian with English Abstract).##Purchase, J. 1997. Parametric analysis to describe genotype environment interaction and yield stability in winter wheat. Ph. D. Dissertation. University of the Free State, South Africa. 84 p.##Rahnejat, S. S. and Farshadfar, E. 2015. Evaluation of phenotypic stability in canola Brassica napus) using GGE-biplot. International Journal of Biosciences 6: 350-356.##Samonte, S. O. P. B., Wilson, L. T., McClung, A. M. and Medley, J. C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Science 45: 2414-2424.##Shiri, M. 2016. Evaluation of fresh and dry forage yield stability of forage sorghum varieties (Sorghum bicolo L. (Moench)) in different conditions. Journal of Crop Breeding 8: 93-101. (In Persian with English Abstract).##Shiri, M. 2013. Grain yield stability analysis of maize (Zea mays L.) hybrids in different drought stress conditions using GGE biplot analysis. Crop Breeding Journal 3 (2): 107-112.##Shiri, M. and Bahrampour, T. 2015. Genotype × environment interaction analysis using GGE biplot in grain maize (Zea mays L.) hybrids under different irrigation conditions. Cereal Research 5:
83-94. (In Persian with English Abstract).##Sneller, C. H., Kilgore-Norquest, L. and Dombek, D. 1997. Repeatability of yield stability in soybean. Crop Science 37: 383-390.##Voltas, J., Lopez-Corles, H. and Borras, G. 2005. Use of biplot analysis and factorial regression for the investigation of superior genotypes in multi-environment trials. European Journal of Agronomy 22: 309-324.##Yan, W. 2001. GGE-biplot: A widow’s application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal 93: 1111-1118.##Yan, W. and Hunt, L. A. 2002. Biplot analysis of diallel data. Crop Science 42: 21-30.##Yan, W. and Kang, M. S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists and agronomists. CRC Press, Boca Raton, FL, USA. 288 p.##Yan, W. and Tinker, N. A. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86: 623-645.##Yan, W., Hunt, L. A., Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega environment investigations based on the GGE biplot. Crop Science 40: 597-605.##Zali, H., Farshadfar, E., Sabaghpour, S. H. and Karimizadeh, R. 2012. Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research 3 (7): 3126-3136.##Zobel, R. W., Wright, M. J. and Gauch, H. G. 1988. Statistical analysis of a yield trial. Agronomy Journal 80 (3): 388-393.##