تغییرات فیزیولوژیک ژنوتیپ‌های برگزیده گندم (Triticum aestivum L.) بر اساس عملکرد تحت شرایط دیم و آبیاری تکمیلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاوزی، دانشگاه مراغه، مراغه، ایران

3 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاوزی، دانشگاه مراغه، مراغه، ایران

4 استاد پژوهش، موسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، مراغه، ایران

چکیده

مقدمه: امروز تولید گندم به‌عنوان مهم‌ترین گیاه زراعی جهان، تحت تاثیر تغییرات فزاینده اقلیمی قرار گرفته است. در همین راستا، بررسی پاسخ‌های فیزیولوژیک و زراعی ژنوتیپ‌های مقاوم و حساس گندم به تنش خشکی در شرایط متغیر دیم همراه با شناسایی ارتباطات موجود میان ویژگی‌های مربوط به مقاومت و حساسیت به شرایط نامساعد محیطی، دارای اهمیت بسزایی است. به‌همین منظور، پژوهش حاضر با هدف بررسی اثر شرایط دیم و آبیاری تکمیلی بر ویژگی‌های فیزیولوژیک، بیوشیمیایی و صفات مرتبط با عملکرد دانه در گندم نان اجرا شد.

مواد و روش‌ها: مواد گیاهی این تحقیق، تعداد چهار ژنوتیپ گندم نان شامل دو ژنوتیپ متحمل (با عملکرد مناسب در شرایط دیم) و دو ژنوتیپ حساس (با عملکرد ضعیف در شرایط دیم) بودند که در دو شرایط دیم (تنش خشکی) و آبیاری تکمیلی در قالب طرح کرت‌های خرد شده بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار در موسسه تحقیقات دیم کشور در مراغه در سال زراعی 1400-1399 مورد مطالعه قرار گرفتند. آبیاری تکمیلی پس از کاشت و در مرحله آبستنی انجام شد. به‌منظور شناسایی تفاوت‌های موجود در بین ژنوتیپ‌ها، فعالیت‌ آنزیم‌های آنتی‌اکسیدان، آسیب‌های اکسیداتیو، ویژگی‌های بیوشیمیایی و عملکرد و اجزای عملکرد دانه مورد اندازه‌گیری قرار گرفتند. تجزیه و تحلیل آماری داده‌ها و مقایسه میانگین‌ها با آزمون LSD در سطح احتمال پنج درصد با نرم‌افزار SAS انجام شد.

یافته‌های پژوهش: نتایج این مطالعه نشان داد که تفاوت‌های معنی‌داری بین ژنوتیپ‌های مورد بررسی از نظر درجه حساسیت و تحمل آن‌ها در پاسخ به تنش خشکی وجود داشت. در مجموع، میزان فعالیت آنزیم‌های آنتی‌اکسیدان در شرایط دیم بیش‌تر از شرایط آبیاری تکمیلی بود. ژنوتیپ شماره‌ 4 در شرایط دیم، بیش‌ترین فعالیت آنزیمی و کم‌ترین میزان پراکسید هیدروژن و مالون دی‌آلدیید و ژنوتیپ شماره 40 در شرایط آبیاری تکمیلی، کم‌ترین فعالیت آنزیمی و بالاترین میزان پراکسید هیدروژن و مالون دی‌آلدیید را نشان داد. در مورد پرولین نیز بالاترین میزان پرولین در ژنوتیپ شماره 4 در شرایط دیم و کم‌ترین میزان پرولین در ژنوتیپ‌های شماره 30 و 40 در شرایط آبیاری تکمیلی مشاهده شد. عملکرد و اجزای عملکرد ژنوتیپ‌های بررسی شده نیز به‌عنوان برآیندی از تغییرات درونی گیاه، روند مشابهی را آشکار ساختند، به‌طوری که بیش‌ترین شمار سنبله در واحد سطح و شمار دانه در هر سنبله در ژنوتیپ‌های شماره 4 و 33 تحت شرایط آبیاری تکمیلی مشاهده شد، در حالی‌که ژنوتیپ‌های شماره 30 و40 در شرایط دیم دارای کم‌ترین مقدار این صفات بودند. وزن هزار دانه این ژنوتیپ‌ها نیز هر چند با شیبی کم‌تر، از روند یکسانی برخوردار بود. بررسی تغییرات مقادیر کلروفیل و همچنین فعالیت‌های آنزیمی در این ژنوتیپ‌ها می‌تواند توجیه‌کننده روند مزبور باشد.

نتیجه‌گیری: یافته‌های این پژوهش نشان داد که اگرچه همه ژنوتیپ‌های مورد بررسی تحت تاثیر تیمارها قرار گرفتند، اما ژنوتیپ‌های متحمل به تنش خشکی با افزایش غلظت پرولین، حفظ ظرفیت کلروفیل و تشدید فعالیت آنزیم‌های آنتی‌اکسیدان کارکرد بهتری در شرایط تنش در مقایسه با ژنوتیپ‌های حساس نشان دادند و به این ترتیب، از کاهش عملکرد کم‌تری در این شرایط برخوردار بودند. جلوگیری از افزایش پراکسید هیدروژن و مالون دی‌آلدیید در این ژنوتیپ‌ها می‌تواند موید و مکمل این نتیجه باشد و به برخورداری از عملکرد بالاتر در شرایط متغیر دیم کمک کند. علاوه بر این، از میان اجزای عملکرد، شمار دانه در سنبله و سپس تعداد سنبله در واحد سطح، بیش‌ترین اثر مستقیم را بر عملکرد دانه داشتند. این مسأله می‌تواند نیاز به تمرکز بیش‌تر بر این اجزا را در آزمایش‌های مزرعه‌ای در راستای دست‌یابی آسان‌تر و سریع‌تر به عملکرد مناسب توجیه کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Physiological changes of selected wheat genotypes (Triticum aestivum L.) based on yield under rainfed conditions and supplementary irrigation

نویسندگان [English]

  • Vahid Sedghyeh 1
  • Fariborz Shekari 2
  • Aَmin Abbasi 3
  • Mozaffar Roostaei 4
  • Naser Sabbaghnia 2
1 Graduate Ph.D., Department of Plant Production and Genetics, Faculty of Agriculture, Maragheh University, Maragheh, Iran
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Maragheh University, Maragheh, Iran
3 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Maragheh University, Maragheh, Iran
4 Research Professor, Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran
چکیده [English]

Introduction
Today, wheat production as the most important crop in the world has been affected by increasing climate changes. In this regard, it is very important to investigate the physiological and agronomical  responses of tolerant and sensitive wheat genotypes to drought stress under variabl rainfed conditions, along with identifying the relationships between the characteristics of resistance and sensitivity to this stress. For this purpose, the present study was conducted to investigate the effect of rainfed and supplementary irrigation conditions on physiological, biochemical and grain yield-related traits in bread wheat.

Materials and methods
The plant materials of this study were four bread wheat genotypes, including two resistant (with suitable and high grain yield under rainfed conditions and two sensitive genotypes with poor grain yield under rainfed conditions. The genotypes were evaluated under rainfed (drought stress) and supplementary irrigation conditions in a split plots design based on randomized complete block design with three replications in the Dryland Agricultural Research Institute, Maragheh, Iran, in 2021-2022 cropping year. Supplementary irrigation was applied after planting and at the booting stage. To identift differences among genotypes, antioxidant enzymes activites, oxidative damage, biochemical characteristics, and grain yield and yield components were measured. All statistical analyses were performed using SAS software and comparison of means were done using LSD test at the probability level of 5%.

Research findings
The results of this study showed that the degree of sensitivity and tolerance of the studied genotypes in response to drought stress was significantly different. In general, the activity level of antioxidant enzymes in rainfed conditions was higher than the supplementary irrigation. The highest enzymatic activity and the lowest levels of hydrogen peroxide and malondialdehyde were observed in genotype number 4 under rainfed conditions, while the lowest enzymatic activity and the highest levels of hydrogen peroxide and malondialdehyde were recorded in genotype number 40 under supplementary irrigation conditions. Morever, the highest proline content was observed in genotype number 4 under rainfed conditions and the lowest proline content was observed in genotypes 30 and 40 under supplementary irrigation conditions. The yield and yield components of the studied genotypes also revealed a similar trend as a result of the internal changes of the plant, such that the highest number of spikes per unit area and number of grains per spike were observed in genotypes 4 and 33 under supplementary irrigation, while genotypes 30 and 40 had the lowest values of these traits under rainfed conditions. The 1000-kernel weight of these genotypes had a similar trend, although with a lower slope. Investigating the changes in chlorophyll content and enzymatic activities ​​in these genotypes can justify this trend.

Conclusion
The findings of this study showed that although all studied genotypes were affected by the treatments, drought-tolerant genotypes showed better performance under stress conditions compared to sensitive genotypes by increasing proline concentration, maintaining chlorophyll capacity, and intensifying antioxidant enzyme activity, and consequently had less yield reduction under stress conditions. Preventing the increase of hydrogen peroxide and malondialdehyde in these genotypes can confirm and complement this result and help to achieve higher yield in variable rainfed conditions. In addition, among the yield components, the number of grains per spike followed by spikes per unit area had the highest direct effect on grain yield. This could justify the need to focus more on these components in field examinations in order to obtain appropriate yield easier and faster.

کلیدواژه‌ها [English]

  • Ascorbate peroxidase
  • Chlorophyll
  • Drought stress
  • Hydrogen peroxide
  • Proline
Tavakoli, A. (2001). Optimal management of single irrigation on dryland wheat farming. Journal of Agricultural Engineering Research, 2(7), 41-50. [In Persian].##Abbasi, A., Sharabyani, M. A., & Sedghi, M. (2021). Changes in spring wheat defense system using zinc and biofortified seeds with this elementunder drought stress. Iranian Journal of Seed Science & Research, 8(3), 225-244. [In Persian]. doi: 10.22124/jms.2021.5227.##Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics & Plant Breeding46(1), 27-34. doi: 17221/67/2009-CJGPB.##Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. doi: 10.1016/s0076-6879(84)05016-3.##Ahmadi, H., Abbasi, A., Taleei, A., Mohammadi, V., & Pueyo, J. J. (2022). Antioxidant response and calcium-dependent protein kinases involvement in canola (Brassica napus L.) tolerance to drought. Agronomy, 12(1), 125. doi: 10.3390/agronomy12010125.##Al-Ghzawi, A. L. A., Khalaf, Y. B., Al-Ajloun, Z. I., Al-Quraan, N. A., Musallam, I., & Hani, N. B. (2018). The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture, 5(5), 67. doi: 10.3390/agriculture8050067.##Alscher, R. G, Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative strese in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi: 10.1093/jexbot/53.372.1331.##Andrés, C. M. C., de la Lastra, J. M. P., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2022). Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses, 2(3), 256-274. doi: 10.3390/stresses2030019.##Arnon, D. I., Allen, M. B., & Whatley, F. R. (1959). Photosynthesis by isolated chloroplast. IV. General concept and comparison of three photochemical reactions. Biochemica et Biophysica Acta, 20, 449-461. doi: 10.1016/0006-3002(56)90339-0.##Asgher, M., Ahmed, S., Sehar, Z., Gautam, H., Gandhi, S. G., & Khan, N. A. (2021). Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). Journal of Hazardous Materials401, 123365. ‏doi: 10.1016/j.jhazmat.2020.123365.##Attarbashi, M., Ghaleshi, S., & Zynalzadeh, A. (2002). Relationship of phenology and physiological traits with grain yield of wheat under rainfed conditions. Iranian Journal of Agricultural Science, 33(1), 21-28. [In Persian].##Bates, L. S., Waldran, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant & Soil, 39, 205-208. doi: 10.1007/BF00018060.##Bienert, G. P., & Chaumont, F. (2014). Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochimica et Biophysica Acta, 1840(5), 1596-1604. doi: 10.1016/j.bbagen.2013.09.017.##Blokhina, O. K., & Fagerstedt, V. (2010). Oxidative metabolism, ROS & NO under oxygen deprivation. Plant Physiology & Biochemistry, 48(5), 359-373. doi: 10.1016/j.plaphy.2010.01.007.##Breusegem, F. V., Vranova, E., Dat, J. F., & Inze, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi: 10.1016/S0168-9452(01)00452-6.##Chakraborty, U., & Pradhan, B. (2012). Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, 24(2), 117-130. doi: 10.1590/S1677-04202012000200005.##Chen, L. M., Lin, C. C., & Kao, C. H. (2000). Copper toxicity in rice seedlings: Changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Botanical Bulletin of Academia Sinica, 41, 99-103.##Dashtaki, M., Bihamta, M. R., Majidi, S., & Azizi-Nejad, R. (2023). Effect of end-of-season drought stress on yield, yield components and some morphological and phenological characteristics of bread wheat (Triticum aestivum L.). Plant Research Journal (Iranian Biology Journal), 36(3), 242-175. dor: 20.1001.1.23832592.1402.36.3.4.9.##Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science11, 552969. doi: 10.3389/fpls.2020.552969.##Drogar, H., Fakheri, B., Mahdinejad, N., & Mohammadi, R. (2019). Evaluation of some biochemical traits in several cultivated and wild wheat species under drought stress. Environmental Stresses in Agricultural Sciences, 12(3), 685-696. doi: 10.22077/escs.2019.1473.1325.##Elhani, S., Martos, V., Rharrabti, Y., Royo, C., & Garcia del Moral, L. F. (2007). Contribution of main stem and tillers to durum wheat (Triticum turgidum L. var. durum) grain yield and its components grown in Mediterranean environments. Field Crops Research, 103(1), 25-35. doi: 10.1016/j.fcr.2007.05.008.##Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., & Braun, H. J. (2022). Global trends in wheat production, consumption and trade. In: Reynolds, M. P., & Braun, H. J. (Eds.). Wheat Improvement: Food Security in a Changing Climate. Cham: Springer International Publishing.  pp. 47-66. doi: 10.1007/978-3-030-90673-3_4.##Erofeeva, E. A. (2015). Dependence of guaiacol peroxidase activity and lipid peroxidation rate in drooping birch (Betula pendula Roth) and Tillet (Tilia cordata Mill) leaf on motor traffic pollution intensity. Dose-Response, 13(2), 1559325815588510. doi: 10.1177/1559325815588510.##Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331-349. doi: 10.1080/07352689.2014.875291.##Feiziasl, V., Fotovat, A., Astarae, A. R., Lakzian, A., & Mousavi, S. B. (2014). Effect of optimized nitrogen application in reducing drought stress effect on grain yield of some rainfed bread wheat genotypes. Seed & Plant Production Journal, 30(2), 169-198. [In Persian]. doi: 10.22092/sppj.2017.110544.##Ghaffari, H., Tadayon, M. R., Nadeem, M., Cheema, M., & Razmjoo, J. (2019). Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum, 41, 22-35. doi: 10.1007/s11738-019-2815-z.##Goud, P. B., & Kachole, M. S. (2011). Effect of exogenous hydrogen peroxide on peroxidase and polyphenol oxidase in Cajanus cajan (L.) Millsp. detached leaves. International Journal of Current Research, 3(10), 61-65.##Guo, Z., Chen, D., & Schnurbusch, T. (2018). Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Frontiers in Plant Science, 9, 330. doi: 10.3389/fpls.2018.00330.##Heidari, Y., & Moaveni, P. (2009). Study of drought stress on ABA accumulation & proline among in differen genotypes forage corn. Research Journal of Biological Sciences, 4(10), 1121-1124. doi: 10.36478/rjbsci.2009.1121.1124.##Hernández, I., Cela, J., Alegre, L., & Munné-Bosch, S. (2012). Antioxidant defenses against drought stress. In: Aroca, R. (Ed.). Plant Responses to Drought stress. Springer, Berlin, Heidelberg, Germany. pp. 231-258. doi: 10.1007/978-3-642-32653-0_9.##Hernandez-Ochoa, I. M., Gaiser, T., Huging, H., & Ewert, F. (2023). Yield components and yield quality of old and modern wheat cultivars as affected by cultivar release date, N fertilization and environment in Germany. Field Crops Research, 302, 109094. doi: 10.1016/j.fcr.2023.109094.##Hoshmand Amjadi, H., Siosemardeh, A., & Hosseinpanahi, A. (2019). Evaluation of yield and yield components of wheat varieties under supplemental irrigation levels. Plant Production & Genetics, 1(1), 23-32. [In Persian].##Ihsan, M. Z., El-Nakhlawy, F. S., Ismail, S. M., Fahad, S., & Daur, I. (2016). Wheat phenological developmentmand growth studies as affected by drought and late season high temperature stress under arid environment. Frontiers in Plant Science, 7, 795. doi: 10.3389/fpls.2016.00795.##Javadi, A., Ghahremanzadeh, M., Sassi, M., Javanbakht, O., & Hayati, B. (2024). Impact of climate variables change on the yield of wheat and rice crops in Iran (application of stochastic model based on Monte Carlo simulation). Computational Economics, 63(3), 983-1000. doi: 10.1007/s10614-023-10389-0.##Jin, E. S., Yokthongwattana, K., Polle, J. E. W., & Melis A. (2003). Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. Plant Physiology, 132(1), 325-364. doi: 10.1104/pp.102.019620.##Kafi, M., Jafaranjad, A., & Jami Al-Ahmadi, M. (2019). Wheat, ecology, physiology and yield estimation. Publications of Ferdowsi University of Mashhad, Mashhad, Iran. 478 p. [In Persian].##Kamal, N. M., Gorafi, Y. S. A., Mega, R., & Tsujimoto, H. (2018). Physiological response of wheat to chemical desiccants used to simulate post-anthesis drought stress. Agronomy, 8(4), 44. doi: 10.3390/agronomy8040044.##Kaplan, E. A., Keskin, Ş., Pehlivan, A., Şanal, T., Ünsal, C. F., Avcioğlu, R., & Sade, F. B. (2023). Yield and quality characteristics of durum wheat genotypes under rainfed conditions in central anatolia region. Genetika55(2), 759-773. doi: 10.2298/GENSR2302759E.##Karimi, M., & Jalini, M. (2019). Supplemental irrigation in cultivation of rainfed wheat. Journal of Water & Sustainable Development, 6(1), 29-34. [In Persian]. doi: 10.22067/jwsd.v6i1.77251.##Khosh-Khabar, H., Maleki, A., Mirzaei Heydari, M., & Babaei, F. (2022). The effect of drought stress on the performance and agrophysiological traits of bread wheat genotypes (Triticum aestivum L.) in irrigated and rainfed conditions. Journal of Crop Ecophysiology, 16(1), 61-80. [In Persian]. doi: 10.30495/JCEP.2022.1885605.1642.##Li, J., Zhang, Z., Liu, Y., Yao, C., Song, W., Xu, X., Zhang, M., Zhou, X., Gao, Y., Wang, Z., Sun, Z., & Zhang, Y. (2019). Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agricultural Water Management224, 105736‏. doi: 10.1016/j.agwat.2019.105736.##Li, Q., Dong, B., Qiao, Y., Liu, M., & Zhang, J. (2010). Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agricultural Water Management, 97(10), 1676-1682. doi: 10.1016/j.agwat.2010.05.025.##Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9), 998-1011. doi: 10.1089/ars.2012.5074.##Lotfi, N., Vahdati, K., Hassani, D., Kholdebarin, B., & Amiri, R. (2010). Peroxidase, guaiacol peroxidase and ascorbate peroxidase activity accumulation in leaves and roots of walnut trees in response to drought stress. Acta Horticulturae, 861, 309-316. doi: 10.17660/ActaHortic.2010.861.42.##Maqbool, R., Sajjad, M., & Khaliq, I. (2010). Morphological diversity and traits association in bread wheat. American-Eurasian Journal of Agricultural & Environmental Sciences, 8(2), 216-224.##Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. (2018). P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13(1), 461-471. doi: 10.1080/17429145.2018.1506516.##Maleki, A., Babaei, F., Cheharsooghi Amin, H., Ahmadi, J., & Asadi Dizaji, A. (2008). The study of seed yield stability and drought tolerance indices of bread wheat genotypes under irrigated and non-irrigated conditions. Research Journal of Biological Sciences, 3(8), 841-844.##Mika, A., & Luthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132(3), 1489-1498. doi: 10.1104/pp.103.020396.##Miller, B. C., Hill, J. E., & Roberts, S. R. (1991). Plant population effects on growth and yield in water‐seeded rice. Agronomy Journal, 83(2), 291-297. doi: 10.2134/agronj1991.00021962008300020006x.##Mirbahar, A. A., Markhand, G. S., Mahari, A. R., Abro, S. A., & Kanhar, N. A. (2009). Effect of water stress on yield and yield components of wheat (Triticum aestivum L.) varieties. Pakistan Journal of Botany, 41(3), 1303-1310.##Nazeri Tahroudi, M., Khalili, K., & Ahmadi F. (2016). Spatial and regional analysis of precipitation trend over Iran in the last half of century. Water & Soil, 30(2), 643-654. [In Persian]. doi: 10.22067/jsw.v30i2.39130.##Outoukarte, I. El-Keroumi, A., Dihazi, A., & Naamani, K. (2019). Use of morpho-physiological parameters and biochemical markers to select drought tolerant genotypes of durum wheat. Journal of Plant Stress Physiology, 5, 1-7. doi: 10.25081/jpsp. 2019.v5.3700.##Pandhair, V., & Sekhon, B. S. (2006). Reactive oxygen species and antioxidants in plants: an overview. Journal of Plant Biochemistry & Biotechnology15, 71-78. doi: 10.1007/BF03321907.##Parveen, A., Arslan Ashraf, M., Hussain, I., Perveen, S., Rasheed, R., Mahmood, Q., & Alqarawi, A. A. (2021). Promotion of growth and physiological characteristics in water-stressed Triticum aestivum in relation to foliar-application of  salicylic acid. Water, 13(9), 1316. doi: 10.3390/w13091316.##Pequeno, D. N. L. (2021). International Maize and Wheat Improvement Center (CIYMMYT), Apdo. Postal 6-641, Mexico. https://repository.cimmyt.org.##Qian, D., Wang, M., Niu, Y., Yang, Y., & Xiang, Y. (2025). Sexual reproduction in plants under high temperature and drought stress. Cell Reports44(3), 115390. doi: 10.1016/j.celrep.2025.115390.##Radfar, M., Ramezanpour, S. S., Soltanloo, H., & Kianmehr, L. (2023). The effect of drought stress on enzymatic and molecular changes of some antioxidants in parental and mutant bread wheat genotype using RNAseq. data. Environmental Stresses in Crop Sciences, 16(3), 765-785.‏ [In Persian]. doi: 10.22077/escs.2023.4970.2094.##Rahimi, Y., Bihamta, M. R., Taleei, A., Alipour, H., & Ingvarsson, P. K. (2019). Applying an artifcial neural network approach for drought tolerance screening among Iranian wheat landraces and cultivars grown under well-watered and rainfed conditions. Acta Physiologiae Plantarum, 41, 156-165. doi: 10.1007/s11738-019-2946-2.##Rajput, V. D., Harish Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M., Gour, V. S., Minkina, T., Sushkova, S., & Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology (Basel), 10(4), 267. doi: 10.3390/biology10040267.##Ramezanpour, M. R., Dastfal, M., & Malakouti, M. J. (2008). The effect of potassium in reducing drought stress in wheat in Darab region of Fars. Journal of Soil Research, 22(1), 127-135. [In Persian]. doi: 10.22092/ijsr.2008.126992.##Rawat, N., Singla‐Pareek, S. L., & Pareek, A. (2021). Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiologia Plantarum171(4), 653-676. doi: 10.1111/ppl.13217.##Rezainia, M., Bihamta, M., Peighambari, S. A., & Abbasi, A. R. (2019). Effect of drought stress on antioxidant enzymes activities and some physiological traits in chickpea (Cicer Arietinum L.). Journal of Crop Breeding, 11(30), 11-22. [In Persian]. doi: 10.29252/jcb.11.30.11.##Roustaii, M. (2015). Effect of supplementary irrigation on grain yield and some agronomic traits of bread wheat genotypes in Maragheh conditions of Iran. Seed & Plant, 31(1), 205-225. [In Persian]. doi: 10.22092/spij.2017.111254.##Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants (Basel), 10(2), 277. doi: 10.3390/antiox10020277.##Sairam, R., Deshmukh, S., & Saxena, C. (1998). Role of antioxidant systems in wheat genotypes tolerance to water stress. Biologia Plantarum, 41, 387-394. doi: 10.1023/A:1001898310321.##Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162(6). 897-904. doi: 10.1016/S0168-9452(02)00037-7.##Sarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8(1), 16496.‏ doi: 10.1038/s41598-018-34944-0.##Savin, R., Cossani, C. M., Dahan, R., Ayad, J. Y., Albrizio, R., Todorovic, M., Karrou, M., & Slafer, G. A. (2022). Intensifying cereal management in dryland Mediterranean agriculture: Rainfed wheat and barley responses to nitrogen fertilisation. European Journal of Agronomy, 137, 126518. doi: 10.1016/j.eja.2022.126518.##Sedghieh, V., Shekari, F., Abbasi, A., & Sabbaghnia, N. (2025). Evaluation of drought tolerance ability in wheat Genotypes through comprehensive stress indices. Hayati Journal of Biosciences 32(1), 117-131. doi: 10.4308/hjb.32.1.117-131.##Sedghieh, V., Shekari, F., Roustaei, M., Abbasi, A., & Sabbaghnia, N. (2023). Assessment of assimilate remobilization and current photosynthesis of bread wheat genotypes in grain filling under rainfed and supplemental irrigated conditions. Iranian Dryland Agronomy Journal, 12(1), 127-147. [In Persian]. doi: 10.22092/idaj.2022.354714.337.##Senapati, N., Stratonovitch, P., Paul, M. J., & Semenov, M. A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549-2560.‏ doi: 10.1093/jxb/ery226.##Simonovicova, A., Bartekova, J., Janovova, L., & Luptakova, A. (2010). Behaviour of Fe, Mg and Ca in acid mine drainage and experimental solutions in the presence of Aspergillus niger species isolated from various environment. Nova Biotechnologica et Chimica, 10(1), 23-32. doi: 10.36547/nbc.1116.##Simova-Stoilova, L., Vaseva, I., Grigorova, B., Demirevska, K., & Feller, U. (2010). Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiology & Biochemistry, 48(2-3), 200-206. doi: 10.1016/j.plaphy.2009.11.003.##Stewart, R. R., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology65(2), 245-248.‏ doi: 10.1104/pp.65.2.245.##Tigkas, D., & Tsakiris, G. (2015). Early estimation of drought impacts on rainfed wheat yield in Mediterranean climate. Environmental Processes, 2, 97-114. doi: 10.1007/s40710-014-0052-4.##Toscano, S., Farieri, E., Ferrante, A., & Romano, D. (2016) Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science, 7, 645 doi:. 10.3389/fpls.2016.00645.##Upadhyay, D., Budhlakoti, N., Singh, A. K., Bansal, R., Kumari, J., Chaudhary, N., Padaria, J. C., Sareen, S., & Kumar, S. (2020). Drought tolerance in Triticum aestivum L. genotypes associated with enhanced antioxidative protection and declined lipid peroxidation. 3 Biotechnology10(6), 281. doi:‏ 10.1007/s13205-020-02264-8.##Xu, Z., Lai, X., Ren, Y., Yang, H., Wang, H., Wang, C., Xia, J., Wang, Z., Yang, Z., Geng, H., & Shi, X. (2023). Impact of drought stress on yield-related agronomic traits of different genotypes in spring wheat. Agronomy, 13(12), 2968. doi: 10.3390/agronomy13122968.##Yao, Yanrong, Lihua Lv, Lihua Zhang, Haipo Yao, Zhiqiang Dong, Jingting Zhang, Junjie Ji, Xiuling Jia, and Huijun Wang. (2019). Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007. Field Crops Research, 239, 114-123. doi: 10.1016/j.fcr.2019.03.011.##Yoshimura, K., Yabuta, Y., Ishikawa, T., & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology123(1), 223-234.‏ doi: 10.1104/pp.123.1.223.##Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research14(6), 415-421. doi: 10.1111/j.1365-3180.1974.tb01084.x.##Zafari, M., Ebadi, A., Jahanbakhsh, S., & Sedghi, M. (2020). Safflower (Carthamus tinctorius) biochemical properties, yield, and oil content affected by 24-epibrassinosteroid and genotype under drought stress. Journal of Agricultural & Food Chemistry, 68(22), 6040-6047. doi:‏ 10.1021/acs.jafc.9b06860.##Zhan, H., Yue, H., Zhao, X., Wang, M., Song, W., & Nie, X. (2017). Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes8(10), 284.‏ doi: 10.3390/genes8100284.##Zhang, H., Richards, R., Riffkin, P., Berger, J., Christy, B., O’Leary, G., Acuna, T. B., & Merry, A. (2019). Wheat grain number and yield: The relative importance of physiological traits and source-sink balance in southern Australia. European Journal of Agronomy, 110, 125935. doi: 10.1016/j.eja.2019.125935.##Zhang, Z., Li, J., Hu, N. Y., Li, W., Qin, W. L., Li, J. P., Gao, Y. M., Liu, Y., Sun, Z. C., & Yu, K. (2021). Spike growth affects spike fertility through the number of florets with green anthers before floret abortion in wheat. Field Crops Research, 260, 108007. doi: 10.1016/j.fcr.2020.108007.