Abyar, S., Navabpour, S., Karimizadeh, R., Nasrollahnejad Ghomi, A. A., Kiani, G., & Gholizadeh, A. (2021). Evaluation of genotype × environment interaction and grain yield stability of different bread wheat genotypes using non-parametric methods.
Cereal Research,
11(2), 89-104. [In Persian]. doi:
10.22124/cr.2021.20461.1687.##Achenef, G. (2022). Advancement of analytical models quantifying G × E interactions and stability analysis in multi-environment trial.
International Journal of Research in Agricultural Sciences,
9(4), 103-120.##Akcura, M., Kaya, Y., Taner, S., & Ayranci, R. (2006). Parametric stability analysis for grain yield of durum wheat.
Plant, Soil & Environment,
52, 254-261. doi:
10.17221/3438-PSE.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2019). Investigating grain yield and yield stability of wheat cultivars introduced in Iran over the last half century.
Cereal Research,
9(2), 157-167. [In Persian]. doi:
10.22124/c.2019.13311.1492.##Alizadeh, B., Rezaizad, A., Hamedani, M. Y., Shiresmaeili, G., Nasserghadimi, F., Khademhamzeh, H. R., & Gholizadeh, A. (2022). Genotype × environment interactions and simultaneous selection for high seed yield and stability in winter rapeseed (
Brassica napus) multi-environment trials.
Agricultural Research,
11(2), 185-196. doi: 10.1007/s40003-021-00565-9.##Amini, A., Vahabzadeh, M., Majidi, E., Afyouni, D., Tabatabaei, S. M. T., Saberi, M. H., Lotfi, A., & Ravari, S. Z. A. (2010). Grain yield stability and adaptability of bread wheat genotypes using different stability indices under salinity stress conditions.
Seed & Plant Improvement Journal,
26(3), 397-411. [In Persian]. doi:
10.22092/spij.2017.111032.##Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production & Protection Paper No. 174. of Food & Agriculture Organization of the Unitrd Nations (FAO) Publications, Rome, Italy.##Baker, R. J. (1988). Tests for crossover genotype-environmental interactions.
Canadian Journal of Plant Science,
68(2), 405-410. doi:
10.4141/cjps88-051.##Barati, A., Zali, H., Pour-Aboughadareh, A., Gholipour, A., Koohkan, S., Shahbazi Homounlo, K., Marzoghiyan, A., Jabari, M., Poodineh, O., & Kheirgo, M. (2022). Interaction effects of genotype × environment using path analysis and mixed models in barley superior lines.
Iranian Journal of Field Crop Science,
53(2), 177-191. [In Persian]. doi:
10.22059/IJFCS.2021.323545.654826.##Becker, H. C. (1981). Correlations among some statistical measures of phenotypic stability.
Euphytica,
30, 835-840. doi:
10.1007/BF00038812.##Becker, H. C., & Leon, J. (1988). Stability analysis in plant breeding.
Plant Breeding,
101(1), 1-23. doi:
10.1111/j.1439-0523.1988.tb00261.x.##Boyko, A., & Kovalchuk, I. (2011). Genome instability and epigenetic modification-heritable responses to environmental stress.
Current Opinion in Plant Biology,
14(3), 260-266. doi:
10.1016/j.pbi.2011.03.003.##Breese, E. L., & Mather, K. (1960). The organisation of polygenic activity within a chromosome in
Drosophila.
Heredity,
14, 375-399. doi:
10.1038/hdy.1960.36.##Cooper, M., Rajatasereekul, S., Immark, S., Fukai, S., & Basnayake, J. (1999). Rainfed lowland rice breeding strategies for Northeast Thailand. I. Genotypic variation and genotype × environment interactions for grain yield.
Field Crops Research,
64, 131-151.
https://doi.org/10.1016/S0378-4290(99)00056-8.##Cooper, M., Technow, F., Messina, C., Gho, C., & Totir, L. R. (2016). Use of crop growth models with whole-genome prediction: Application to a maize multi-environment trial.
Crop Science,
56, 2141-2156. doi: 10.2135/cropsci2015.08.0512.##Crossa, J. (1990). Statistical analysis of multilocation trials.
Advances in Agronomy,
44, 55-85. doi:
10.1016/S0065-2113(08)60818-4.##Crossa, J., Vargas, M., Van Eeuwijk, F. A., Jiang, C., Edmeades, G. O., & Hoisintong, D. (1999). Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables.
Theoretical & Applied Genetics,
99, 611-625. doi:
10.1007/s001220051276.##Crow, J. F. (1986). Basic Concepts in Population, Quantitative and Evolutionary Genetics. W. H. Freeman & Co., New York.##Dehghani, M. R., Farshadfar, E., & Karami, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments.
Euphytica,
159(3), 419-432. doi:
10.1007/s10681-007-9629-1.##Denis, J. B., Gauch, H. G., Jr, Kang, M. S., Van Eeuwijk, F. A., & Zobel, R. W. (1996). Bibliography on genotype-by-environment interaction. In: Kang, M. S., & Gauch, H. G., Jr (Eds.). Genotype by Environment Interaction. CRC Press, Boca Raton, Florida, pp. 405-409.##Dia, M., Wehner, T. C., Hassell, R., Price, D. S., Boyhan, G. E., Olson, S., King, S., Davis, A. R., Tolla, G. E., Bernier, J., & Juarez, B. (2016). Value of locations for representing megaenvironments and for discriminating yield of watermelon in the US.
Crop Science,
56(4), 1726-1735. doi:
10.2135/cropsci2015.11.0698.##Doolittle, D. P. (1987). Population Genetics: Basic Principles. Springer, New York.##Eberhart, S. T., & Russell, W. A. (1966). Stability parameters for comparing varieties.
Crop Science,
6(1), 36-40. doi:
10.2135/cropsci1966.0011183X000600010011x.##Eisemann, R. L., Cooper, M., & Woodruff, D. R. (1990). Beyond the analytical methodology, better interpretation and exploitation of GE interaction in plant breeding. In: Kang, M. S. (Ed.). Genotype-by-Environment Interaction and Plant Breeding. Louisiana State University Agricultural Center, Baton Rouge, Louisiana, pp. 108-117.##Farokhzadeh, S., Shahsavand Hassani, H., Mohammadi-Nejad, G., & Zinati, Z. (2022). Evaluation of grain yield stability of tritipyrum as a novel cereal in comparison with triticale lines and bread wheat varieties through univariate and multivariate parametric methods.
PLoS ONE,
17(9), e0274588. doi:
10.1371/journal.pone.0274588.##Farshadfar, A. (2015). The interaction effect of genotype and environment in plant breeding. Kermanshah Branch, Islamic Azad University Press, 531 p.##Farshadfar, E., Sabaghpour, S. H., & Zali, H. (2012). Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (
Cicer arietinum L.) genotypes under diverse environments.
Australian Journal of Crop Science,
6(3), 514-524.##Fernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (
Theobroma cacao L.) genotypes, and its effect on growth and physiology.
Frontiers in Plant Science,
12, 777842. doi:
10.3389/fpls.2021.777842.##Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme.
Australian Journal of Agricultural Research,
14(6), 742-754. doi:
10.1071/AR9630742.##Flores, F., Moreno, M., & Cubero, J. (1998). A comparison of univariate and multivariate methods to analyze G×E interaction.
Field Crops Research,
56(3), 271-286. doi:
10.1016/S0378-4290(97)00095-6.##Fox, P. N., Skovmand, B., Thompson, B. K., & Braun, H. J. (1990). Yield and adaptation of hexaploid spring triticale.
Euphytica,
47(1), 57-64. doi:
10.1007/BF00040364.##Francis, T., & Kannenberg, L. (1978). Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes.
Canadian Journal of Plant Science,
58(4), 1029-1034. doi:
10.4141/cjps78-15.##Freeman, G. H., & Perkins, J. M. (1971). Environmental and genotype-environmental components of variability VIII. Relations between genotypes grown in different environments and measures of these environments.
Heredity,
27, 15-23. doi:
10.1038/hdy.1971.67.##Fripp, Y. J., & Caten, C. E. (1971). Genotype-environment interactions in
Schizophyllum commune. I. Analysis and character.
Heredity,
27, 393-407. doi:
10.1038/hdy.1971.103.##Gauch H. G. Jr, (1992). AMMI analysis on yield trials. In: Fox, P. N., & Hettel, G. P. (Eds.). Wheat Special Report No. 8: Management and Use of International Trial Data for Improving Breeding Efficiency. pp. 9-12. CIMMYT, Mexico.##Gupta, C., & Salgotra, R. K. (2022). Epigenetics and its role in affecting agronomical traits.
Frontiers in Plant Science,
13, 925688.
doi: 10.3389/fpls.2022.925688.##Handel, A. E., Ebers, G. C., & Ramagopalan, S. V. (2009). Epigenetics: molecular mechanisms and implications for disease.
Trens in Molecular Medicine,
16(1), 7-16. doi:
10.1016/j.molmed.2009.11.003.##Hanson, W. D. (1970). Genotypic stability.
Theoretical & Applied Genetics,
40, 226-231. doi:
10.1007/BF00285245.##Hashim, N., Rafii, M. Y., Oladosu, Y., Ismail, M. R., Ramli, A., Arolu, F., & Chukwu, S. (2021). Integrating multivariate and univariate statistical models to investigate genotype-environment interaction of advanced fragrant rice genotypes under rainfed condition.
Sustainability,
13(8), 4555. doi:
10.3390/su13084555.##Hernandez, C. M., Crossa, J., & Castillo, A. (1993). The area under the function: an index for selecting desirable genotypes.
Theoretical & Applied Genetics,
87, 409-415. doi:
10.1007/BF00215085.##Holland, J. B., Nyquist, W. E., Cervantes-Martínez, C. T., & Janick, J. (2002). Estimating and interpreting heritability for plant breeding: An update. In: Janick, J. (Ed.). Plant Breeding Reviews. Vol. 22. pp. 9-112. doi:
10.1002/9780470650202.ch2.##Huehn, M. (1990a). Non-parametric measures of phenotypic stability. Part I. Theory.
Euphytica,
47, 189-194. doi:
10.1007/BF00036213.##Huehn, M. (1990b). Non-parametric measures of phenotypic stability: Part II. Application.
Euphytica,
47, 195-201. doi:
10.1007/BF00024242.##Huehn, M. (1996). Non-parametric analysis of genotype × environment interactions by ranks. Genotype by environment interaction. CRC Press, Boca Raton, FL. pp. 213-228.##Jalaluddin, M. D., & Harrison, S. A. (1993). Repeatability of stability statistics for grain yield in wheat.
Crop Science,
33, 720-725. doi:
10.2135/cropsci1993.0011183X003300040017x.##Kakoulidou, I., Avramidou, E. V., Baránek, M., Brunel-Muguet, S., Farrona, S., Johannes, F., Kaiserli, E., Lieberman-Lazarovich, M., Martinelli, F., Mladenov, V., Testillano, P. S., Vassileva, V., & Maury, S. (2021). Epigenetics for crop improvement in times of global change.
Biology,
10(8), 766. doi:
10.3390/biology10080766.##Kang, M. S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes.
Cereal Research Communications,
16(1/2), 113-115. https://
www.jstor.org/stable/23782771.##Kang, M. S. (1993a). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers.
Agronomy Journal,
85(3), 754-757. doi:
10.2134/agronj1993.00021962008500030016x.##Kang, M. S. (1993b). Issues in GE interaction. In: Rao, V., Hanson, I. E., & Rajanaidu, N. (Eds.). Genotype-Environment Interaction Studies in Perennial Tree Crops. Palm Oil Research Institute of Malaysia, Kuala Lumpur, Malaysia. pp. 67-73.##Kang, M. S. (1997). Using genotype-by-environment interaction for crop cultivar development. In: Sparks, D. L. (Ed.). Advances in Agronomy. Vol. 62. Academic Press. pp. 199-252. doi:
10.1016/S0065-2113(08)60569-6.##Kang, M. S. (2020). Genotype-environment interaction and stability analyses: An update. In: Kang, M. S. (Ed.). Quantitative Genetics, Genomics, and Plant Breeding. 2
nd Edition. CABI. pp. 140-161. doi:
10.1079/9781789240214.0140.##Kang, M. S., & Gauch, H. G., Jr. (1996). Genotype-by-Environment Interaction. CRC Press, Boca Raton, Florida. doi:
10.1201/9780367802226.##Kang, M. S., & Miller, J. D. (1984). Genotype × environment interactions for cane and sugar yield and their implications in sugarcane breeding.
Crop Science,
24(3), 435-440. doi:
10.31742/ISGPB.83.1.14.##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., & Armion, M. (2021). Evaluation of genotype × environment interaction and determining grain yield stability of durum wheat genotypes in uniform regional yield trials in semi-warm rainfed areas.
Plant Genetic Research,
7(2), 25-40. [In Persian]. doi:
10.52547/pgr.7.2.3.##Karimizadeh, R., Mohammadi, M., Sabaghnia, N., & Shefazadeh, M. K. (2012). Using Huehn’s nonparametric stability statistics to investigate genotype × environment interaction.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
40(1), 293-301. doi:
10.15835/nbha4017593.##Karimizadeh, R., Vaez, B., Hosseinpour, T., Mehrban, A., & Ghojagh, H. (2009). Study on correlation and repeatability of parametric and multivariate statistics of grain yield stability in rainfed barley.
Journal of Crop Production & Processing,
13(48), 53-62. [In Persian]. dor:
20.1001.1.22518517.1388.13.48.5.0.##Kebede, G., Worku, W., Jifar, H., & Feyissa, F. (2023). Grain yield stability analysis using parametric and nonparametric statistics in oat (
Avena sativa L.) genotypes in Ethiopia.
Grassland Research,
2(3), 182-196. doi:
10.1002/glr2.12056.##Khalili, M., & Pour-Aboughadareh, A. (2016). Parametric and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines.
Journal of Agricultural Science & Technology,
18(3), 789-803. dor:
20.1001.1.16807073.2016.18.3.20.2.##Lado, B., Barrios, P. G., Quincke, M., Silva, P., & Gutiérrez, L. (2016). Modeling genotype × environment interaction for genomic selection with unbalanced data from a wheat breeding program.
Crop Science,
56, 2165-2179. doi:
10.2135/cropsci2015.04.0207.##Lin, C. S., & Binns, M. R. (1988a). A method of analyzing cultivar × location × year experiment: A new stability parameter.
Theoretical & Applied Genetics,
76, 425-430. doi:
10.1007/BF00265344.##Lin, C. S., & Binns, M. R. (1988b). A superiority measure of cultivar performance for cultivar × location data.
Canadian Journal of Plant Science,
68(1), 193-198. doi:
10.4141/cjps88-022.##Lin, C. S., & Binns, M. R. (1991). Genetic properties of four types of stability parameters.
Theoretical & Applied Genetics,
82, 505-509. doi:
10.1007/BF00588606.##Lin, C. S., & Binns, M. R. (1994). Concepts and methods for analyzing regional trial data for cultivar and location selection. In: Janick, J. (Ed.). Plant Breeding Reviews. Vol. 12. pp. 271-297. doi:
10.1002/9780470650493.ch10.##Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: Where do we stand?
Crop Science,
26(5), 894-900. doi:
10.2135/cropsci1986.0011183X002600050012x.##Macholdt, J., Piepho, H. P., & Honermeier, B. (2019). Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment.
European Journal of Agronomy,
102, 14-22. doi:
10.1016/j.eja.2018.11.003.##Mohammadi, R., & Amri, A. (2012). Analysis of genotype × environment interaction in rain-fed durum wheat of Iran using GGE-biplot and non-parametric methods.
Canadian Journal of Plant Science,
92, 757-770. doi:
10.4141/cjps2011-13.##Mooers, C. A. (1921). Agronomic placement of varieties.
Agronomy Journal,
13(9), 579-586. doi:
10.2134/agronj1921.00021962001300090003x.##Moreno-Gonzalez, J., Crossa, J., & Cornelius, P. L. (2004). Genotype × environment interaction in multi-environment trials using shrinkage factors for AMMI models.
Euphytica,
137, 119-127.
10.1023/B:EUPH.0000033841.05593.15.##Mortazavian, S. M., & Azizi-Nia, S. (2014). Nonparametric stability analysis in multi-environment trial of canola.
Turkish Journal of Field Crops,
19(1), pp. 108-117.
10.17557/tjfc.41390.##Moumeni, A., Mohaddesi, A., Amooughli-Tabari, M., Tavassoli-Larijani, F., & Khosravi, V. (2019). Stability analysis and genotype × environment interaction for grain yield of rice (
Oryza sativa L.) promising breeding lines.
Iranian Journal of Crop Sciences,
20(4), 329-344. [In Persian].
dor: 20.1001.1.15625540.1397.20.4.5.4.##Nassar, R., &
Hühn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability.
Biometrics,
43(1), 45-53. doi:
10.2307/2531947.##Nassar, R.,
Léon, J., &
Hühn, M. (1994). Tests of significance for combined measures of plant stability and performance.
Biometrical Journal,
36(1), 109-123. doi:
10.1002/bimj.4710360115.##Olivoto, T., Lúcio, A. D., da Silva, J. A., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019). Mean performance and stability in multi‐environment trials I: Combining features of AMMI and BLUP techniques.
Agronomy Journal,
111(6), 2949-2960. doi:
10.2134/agronj2019.03.0204.##Pauli, D., Chapman, S. C., Bart, R., Topp, C. N., Lawrence-Dill, C. J., Poland, J., & Gore, M. A. (2016). The quest for understanding phenotypic variation via integrated approaches in the field environment.
Plant Physiology,
172(2), 622-634. doi:
10.1104/pp.16.00592.##Perkins, J. M., & Jinks, J. L. (1968). Environmental and genotype-environmental components of variability.
Heredity,
23(3), 339-356. doi:
10.1038/hdy.1968.48.##Piepho, H. P., & Blancon, J. (2023). Extending Finlay–Wilkinson regression with environmental covariates.
Plant Breeding,
142(5), 621-631. doi:
10.1111/pbr.13130.##Pinthus, M. J. (1973). Estimate of genotypic value: A proposed method.
Euphytica,
22(1), 121-123. doi:
10.1007/BF00039055.##Plaisted, R. L. (1960). A shorter method for evaluating the ability of selections to yield consistently over locations.
American Potato Journal,
37, 166-172. doi:
10.1007/BF02855271.##Plaisted, R. L., & Peterson, L. C. (1959). A technique for evaluating the ability of selections to yield consistently in different locations or seasons.
American Potato Journal,
36, 381-385. doi:
10.1007/BF02852735.##Pour-Aboughadareh, A., Barati, A., Koohkan, S. A., Jabari, M., Marzoghian, A., Gholipoor, A., Shahbazi-Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022a). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics.
Bulletin of the National Research Centre,
46(1), 19. doi:
10.1186/s42269-022-00703-5.##Pour-Aboughadareh, A., Khalili, M., Poczai, P., & Olivoto, T. (2022b). Stability indices to deciphering genotype-by-environment interaction (GEI) effect: An applicable review for use in plant breeding programs.
Plants,
11(3), 414. doi:
10.3390/plants11030414.##Raiger, H. L., & Prabhakaran, V. T. (2001). A study on the performance of a few non-parametric stability measures using pearl-millet data.
Indian Journal of Genetics & Plant Breeding,
61(1), 7-11.##Raiger, H. L., & Prabhakaran, V. T. (2000). A statistical comparison between non-parametric and parametric stability measures.
Indian Journal of Genetics & Plant Breeding,
60(4), 417-432.##Reyes-Herrera, P. H., Muñoz-Baena, L., Velásquez-Zapata, V., Patiño, L., Delgado-Paz, O. A., Díaz-Diez, C. A., & Cortés, A. J. (2020). Inheritance of rootstock effects in avocado (
Persea americana Mill.) cv. Hass.
Frontiers in Plant Science,
11, 555071.
doi: 10.3389/fpls.2020.555071.##Roemer, T. (1917). Sind die ertragsreichen Sorten ertragssicherer.
Mitteilungen der DLG,
32, 87-89. [In German].##Roy, D. (2000). Plant breeding analysis and exploitation of variation. Alpha Science International,
UK.##Sabaghnia, N., Karimizadeh, R., & Mohammadi, M. (2012). The use of corrected and uncorrected nonparametric stability measurements in durum wheat multi-environmental trials.
Spanish Journal of Agricultural Research,
10(3), 722-730.
doi: 10.5424/sjar/2012103-384-11.##Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants.
Annual Reviews of Ecological Systematics,
17, 667-693.
doi: 10.1146/annurev.es.17.110186.003315.##Sharifi, P., Erfani, R., Mohadesi, A., Abbassian, A., Yousefi, M. M., Aminpanah, H., & Saeedi, M. (2020). Analysis of the stability of grain yield in some rice genotypes using parametric and non-parametric univariate methods.
Crop Production,
13(3), 85-106. [In Persian]. doi:
10.22069/ejcp.2021.17883.2315.##Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability.
Heredity,
29(2), 237-245. doi:
10.1038/hdy.1972.87.##Silvey, V. (1981). The contribution of new wheat, barley and oat varieties to increasing cereal yield in England and Wales 1947-78. Journal of the National Institute of Agricultural Botany, 15, 399-412.##Singh, M., & Ceccarelli, S. (1995). Estimation of heritability using varietal trials data from incomplete blocks.
Theoretical & Applied Genetics,
90, 142-145. doi:
10.1007/BF00221008.##Soroush, H. R., & Rabiei, B. (2009). Evaluation of yield stability of rice genotypes in different locations of Guilan province.
Journal of Agricultural Knowledge,
18(4), 106-114. [In Persian].##Studinicki, M., Kang, M. S., Iwańska, M., Oleksiak, T., Wo´jcik-Grant, E., & Mądry, W. (2019). Consistency of yield ranking and adaptability patterns of winter wheat cultivars between multi-environmental trials and farmer surveys.
Agronomy,
9(5), 245. doi:
10.3390/agronomy9050245.##Syukur, M., Sujiprihati, S., Yunianti, R., & Kusumah, D. A. (2011). Parametric stability analysis for yield of chili pepper (
Capsicum annuum L.).
Jurnal Agronomi Indonesia,
39(1), 31-37. doi:
10.24831/jai.v39i1.13185.##Taherian, M., Bihamta, M. R., Peyghambari, S. A., Alizadeh, H., & Rasoulnia, A. (2019). Stability analysis and selection of salinity tolerant barley genotypes.
Journal of Crop Breeding,
11(29), 93-103. doi:
10.29252/jcb.11.29.93.##Tai, G. C. C. (1971). Genotypic stability analysis and its application to potato regional trials.
Crop Science,
11(2), 184-190. doi:
10.2135/cropsci1971.0011183X001100020006x.##Tarinejad, A. (2016). Investigating the compatibility of bread wheat genotypes using Eberhart-Russell, simultaneous selection, bi-plot and non-parametric ranking methods.
Cereal Research,
6(4), 451-464. dor:
20.1001.1.22520163.1395.6.4.4.8.##Taudt, A., Tatche, M. C., & Johannes, F. (2016). Genetic sources of population epigenomic variation.
Nature Reviews Genetics,
17, 319-332. doi:
10.1038/nrg.2016.45.##Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph. D. Dissertation. PJ School IARI, New Delhi, India.##Tonosaki, K., Fujimoto, R., Dennis, E. S., Raboy, V., & Osabe, K. (2022). Will epigenetics be a key player in crop breeding?
Frontiers in Plant Science,
13, 958350. doi:
10.3389/fpls.2022.958350.##Vaezi, B., Pour-Aboughadareh, A., Mehraban, A., Hossein-Pour, T., Mohammadi, R., Armion, M., & Dorri, M. (2018). The use of parametric and non-parametric measures for selecting stable and adapted barley lines.
Archives of Agronomy & Soil Science,
64(5), 597-611. doi:
10.1080/03650340.2017.1369529.##Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Mehraban, A., Hossein-Pour, T., Koohkan, E., Ghasemi, S., Moradkhani, H., & Siddique, A. H. M. (2019). Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes.
Euphytica,
215, 63. doi:
10.1007/s10681-019-2386-5.##van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × environment interactions?
Crop Science,
56(5), 2119-2140. doi:
10.2135/cropsci2015.06.0375.##Witcombe, J. R., & Whittington, W. J. (1971). A study of the genotype-environment interaction shown by germinating seeds of
Brassica napus.
Heredity,
26, 397-411. doi:
10.1038/hdy.1971.51.##Wricke, G. (1962). Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen.
Zeitschrift für Pflanzenzüchtung,
47, 92-96. [In German].##Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants.
Theoretical & Applied Genetics,
129(4), 653-673. doi:
10.1007/s00122-016-2691-5.##Yan, W. (2016). Analysis and handling of G × E in a practical breeding program.
Crop Science,
56(5), 2106-2118. doi:
10.2135/cropsci2015.06.0336.##Yan, W., & Kang, M. S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton. doi:
10.1201/9781420040371.##Yates, F., & Cochran, W. G. (1938). The analysis of groups of experiments.
The Journal of Agricultural Science,
28(4), 556-580. doi:
10.1017/S0021859600050978.