مروری بر روش‌های تجزیه پایداری در به‌نژادی گیاهی با تاکید بر غلات، 1- رویکردهای ناپارامتری و پارامتری تک‌متغیره

نوع مقاله : مقاله مروری

نویسندگان

1 محقق پسادکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

4 استاد، گروه تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

5 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

6 دانش‌آموخته کارشناسی ارشد، انستیتو علوم اعصاب تولوز، تولوز، فرانسه

7 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

8 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه سراوان، سراوان، ایران

چکیده

مقدمه: برهمکنش ژنوتیپ × محیط (GEI; Genotype × Environment Interaction) به‌طور قابل توجهی بر عملکرد انواع مختلف ژنوتیپ‌ها در شرایط محیطی مختلف تأثیر می‌گذارد و چالش‌هایی برای محققان کشاورزی که بر بهبود عملکرد رقم‌های زراعی متمرکز هستند، ایجاد می‌کند. انتخاب و معرفی ژنوتیپ‌ها به‌عنوان یکی از مراحل کلیدی در برنامه‌های به­نژادی، به‌دلیل تأثیرات ناشی از تنش‌های زیستی و غیرزیستی، پیچیده و زمان‌بر است. یک ژنوتیپ مطلوب، ضمن اینکه باید عملکرد بالایی داشته باشد، در عین حال باید بتواند پایداری خود را در شرایط محیطی مختلف حفظ کند و در حقیقت نباید نوسانات عملکرد زیادی در محیط‌های مختلف داشته باشد. این یک مفهوم پویا از پایداری است و به شناسایی ژنوتیپ‌های مناسب کمک می‌کند، اما هیچ‌یک از روش‌های موجود به‌تنهایی نمی‌توانند تمامی ابعاد عملکرد را در محیط‌های مختلف توضیح دهند. بنابراین، برای انتخاب مؤثر ژنوتیپ‌های برتر و درک برهمکنش ژنوتیپ × محیط، ضروری است که داده‌های چندگانه در آزمایش‌های چندمحیطی (METs; Multi-Environment Trials) از جنبه‌های مختلف پایداری عملکرد مورد بررسی قرار گیرند. در این راستا، روش‌های مختلف با دقت بالا برای تجزیه پایداری ژنوتیپ‌ها ارائه شده است که می‌توان آن‌ها را به دو گروه عمده، شامل روش‌های ناپارامتری و پارامتری (تک‌متغیره و چندمتغیره) تقسیم کرد. در این مطالعه، کارایی روش‌های مختلف ناپارامتری و پارامتری تک‌متغیره تجزیه پایداری به‌طور جامع با تأکید بر غلات مورد ارزیابی و مقایسه قرار می‌گیرند. علاوه بر این، مفاهیم بنیادی برهمکنش ژنوتیپ × محیط، دلایل ایجاد، ضرورت و اهمیت مطالعه آن و همچنین نحوه ارزیابی پایداری و عملکرد ژنوتیپ‌ها در آزمایش‌های چندمحیطی تشریح می‌شوند.

یافته‌های تحقیق: نتایج این مطالعه نشان داد که روش‌های تحلیل پایداری، شامل روش‌های پارامتری مبتنی بر تحلیل رگرسیون و تحلیل واریانس و همچنین روش‌های ناپارامتری، هر کدام دارای مزایا و معایب خاص خود هستند. به‌نظر می‌رسد که روش‌های پارامتری در تحلیل برهمکنش ژنوتیپ × محیط کارایی بیش‌تری دارند، در حالی‌که روش‌های ناپارامتری برای تجزیه و تحلیل برهمکنش‌های غیرمتقاطع مناسب‌تر هستند. اندازه نمونه و هدف به‌نژادگر از عامل‌های مهم و کلیدی در انتخاب نوع روش تجزیه پایداری هستند. برای نمونه‌های کوچک، روش‌های پارامتری برتری محسوسی دارند، اما با افزایش اندازه نمونه مورد مطالعه، کارآیی هر دو روش تقریباً یکسان می‌شود. به‌نظر می‌رسد که ترکیب این دو نوع شاخص،‌ می‌تواند در انتخاب ژنوتیپ‌های برتر و پایدار به محققان به‌نژادی کمک ‌کند.

نتیجه‌گیری: در این مطالعه، کارآیی روش‌های ناپارامتری و پارامتری تک‌متغیره در ارزیابی و سنجش پایداری و عملکرد ژنوتیپ‌ها در آزمایش‌های چندمحیطی (METs) مورد بررسی و مقایسه قرار گرفت. استفاده از روش‌های تحلیل پایداری متنوع، به محققان و به‌نژادگران این امکان را می‌دهد که ژنوتیپ‌های امیدبخش را بر اساس عملکرد و پایداری انتخاب و در افزایش پایداری تولید محصول و امنیت غذایی کمک کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review of stability analysis methods in plant breeding with an emphasis on cereals, I: Non-parametric and univariate parametric approaches

نویسندگان [English]

  • Nishtman Abdi 1
  • Mona Bordbar 2
  • Reza Darvishzadeh 3
  • Babak Rabiei 4
  • Hadi Alipour 5
  • Somaieh Soufimaleky 6
  • Hamid Hatami Maleki 7
  • Mitra Jabbari 8
1 Post-Doctoral Researcher, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Ph. D. Student, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
4 Professor, Department of Plant Production and Genetics, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
5 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
6 M. Sc. Graduate, Institut des Sciences du Cerveau de Toulouse, Toulouse, France
7 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
8 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Saravan, Saravan, Iran
چکیده [English]

Introduction
Genotype × environment interaction (GEI) significantly affects the performance of different genotypes under various environmental conditions, posing challenges for agricultural researchers focused on improving crop varieties. Selection and introduction of genotypes, as a key steps in breeding programs, is complex and time-consuming due to the impacts of biotic and abiotic stresses. An ideal genotype should not only have high yield, but also be able to maintain its stability across varying conditions and not have high yield fluctuations. This is a dynamic concept of stability and can help identify suitable genotypes, however, none of the existing methods alone can explain all dimensions of performance across different environments. Therefore, for the effective selection of superior genotypes and understanding the genotype × environment interaction, it is essential to analyze multiple datasets from multi-environment trials (METs) from various aspects of yield stability. In this regard, various methods with high accuracy have been proposed for analyzing the stability of genotypes, which can be divided into two main groups, including non-parametric and parametric (univariate and multivariate) methods. In this study, the efficiency of various non-parametric and univariate parametric stability methods are comprehensively reviewed and compared with an emphasis on cereals. Moreover, the fundamental concepts of GEI, its causes, its necessity and importance, as well as how to evaluate the stability and performance of genotypes in METs are explained.

Research findings
The results of this study indicated that stability analysis methods, including parametric methods based on regression analysis and analysis of variance as well as non-parametric methods, each have their specific advantages and disadvantages. It seems that parametric methods are more effective in analyzing genotype × environment interactions, while non-parametric methods are more suitable for analyzing non-crossing interactions. The sample size and the breeder’s objective are important and key factors in selecting the type of stability analysis method. In small sample conditions, parametric methods have an advantage, however, as the sample size increases, the effectiveness of both methods becomes nearly equal. It seems that the combination of these two types of indices can assist breeders in selecting superior and stable genotypes.

Conclusion
In the current study, the effectiveness of non-parametric and parametric methods in assessing and measuring the stability and performance in multi-environment trials (METs) was investigated and compared. The use of various stability analysis methods enables researchers and breeders to select promising genotypes based on performance and stability, ultimately contributing to increase the sustainability of crop production and food security.

کلیدواژه‌ها [English]

  • Genotype × environment interaction (GEI)
  • Multi-environment trials (METs)
  • Performance stability
  • Regression-based indices
  • Variance analysis-based indices
Abyar, S., Navabpour, S., Karimizadeh, R., Nasrollahnejad Ghomi, A. A., Kiani, G., & Gholizadeh, A. (2021). Evaluation of genotype × environment interaction and grain yield stability of different bread wheat genotypes using non-parametric methods. Cereal Research, 11(2), 89-104. [In Persian]. doi: 10.22124/cr.2021.20461.1687.##Achenef, G. (2022). Advancement of analytical models quantifying G × E interactions and stability analysis in multi-environment trial. International Journal of Research in Agricultural Sciences, 9(4), 103-120.##Akcura, M., Kaya, Y., Taner, S., & Ayranci, R. (2006). Parametric stability analysis for grain yield of durum wheat. Plant, Soil & Environment, 52, 254-261. doi: 10.17221/3438-PSE.##Alipour, H., Abdi, H., Rahimi, Y., & Bihamta, M. R. (2019). Investigating grain yield and yield stability of wheat cultivars introduced in Iran over the last half century. Cereal Research, 9(2), 157-167. [In Persian]. doi: 10.22124/c.2019.13311.1492.##Alizadeh, B., Rezaizad, A., Hamedani, M. Y., Shiresmaeili, G., Nasserghadimi, F., Khademhamzeh, H. R., & Gholizadeh, A. (2022). Genotype × environment interactions and simultaneous selection for high seed yield and stability in winter rapeseed (Brassica napus) multi-environment trials. Agricultural Research, 11(2), 185-196. doi: 10.1007/s40003-021-00565-9.##Amini, A., Vahabzadeh, M., Majidi, E., Afyouni, D., Tabatabaei, S. M. T., Saberi, M. H., Lotfi, A., & Ravari, S. Z. A. (2010). Grain yield stability and adaptability of bread wheat genotypes using different stability indices under salinity stress conditions. Seed & Plant Improvement Journal, 26(3), 397-411. [In Persian]. doi: 10.22092/spij.2017.111032.##Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production & Protection Paper No. 174. of Food & Agriculture Organization of the Unitrd Nations (FAO) Publications, Rome, Italy.##Baker, R. J. (1988). Tests for crossover genotype-environmental interactions. Canadian Journal of Plant Science, 68(2), 405-410. doi: 10.4141/cjps88-051.##Barati, A., Zali, H., Pour-Aboughadareh, A., Gholipour, A., Koohkan, S., Shahbazi Homounlo, K., Marzoghiyan, A., Jabari, M., Poodineh, O., & Kheirgo, M. (2022). Interaction effects of genotype × environment using path analysis and mixed models in barley superior lines. Iranian Journal of Field Crop Science, 53(2), 177-191. [In Persian]. doi: 10.22059/IJFCS.2021.323545.654826.##Becker, H. C. (1981). Correlations among some statistical measures of phenotypic stability. Euphytica, 30, 835-840. doi: 10.1007/BF00038812.##Becker, H. C., & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101(1), 1-23. doi: 10.1111/j.1439-0523.1988.tb00261.x.##Boyko, A., & Kovalchuk, I. (2011). Genome instability and epigenetic modification-heritable responses to environmental stress. Current Opinion in Plant Biology, 14(3), 260-266. doi: 10.1016/j.pbi.2011.03.003.##Breese, E. L., & Mather, K. (1960). The organisation of polygenic activity within a chromosome in Drosophila. Heredity, 14, 375-399. doi: 10.1038/hdy.1960.36.##Cooper, M., Rajatasereekul, S., Immark, S., Fukai, S., & Basnayake, J. (1999). Rainfed lowland rice breeding strategies for Northeast Thailand. I. Genotypic variation and genotype × environment interactions for grain yield. Field Crops Research, 64, 131-151. https://doi.org/10.1016/S0378-4290(99)00056-8.##Cooper, M., Technow, F., Messina, C., Gho, C., & Totir, L. R. (2016). Use of crop growth models with whole-genome prediction: Application to a maize multi-environment trial. Crop Science, 56, 2141-2156. doi: 10.2135/cropsci2015.08.0512.##Crossa, J. (1990). Statistical analysis of multilocation trials. Advances in Agronomy, 44, 55-85. doi: 10.1016/S0065-2113(08)60818-4.##Crossa, J., Vargas, M., Van Eeuwijk, F. A., Jiang, C., Edmeades, G. O., & Hoisintong, D. (1999). Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theoretical & Applied Genetics, 99, 611-625. doi: 10.1007/s001220051276.##Crow, J. F. (1986). Basic Concepts in Population, Quantitative and Evolutionary Genetics. W. H. Freeman & Co., New York.##Dehghani, M. R., Farshadfar, E., & Karami, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432. doi: 10.1007/s10681-007-9629-1.##Denis, J. B., Gauch, H. G., Jr, Kang, M. S., Van Eeuwijk, F. A., & Zobel, R. W. (1996). Bibliography on genotype-by-environment interaction. In: Kang, M. S., & Gauch, H. G., Jr (Eds.). Genotype by Environment Interaction. CRC Press, Boca Raton, Florida, pp. 405-409.##Dia, M., Wehner, T. C., Hassell, R., Price, D. S., Boyhan, G. E., Olson, S., King, S., Davis, A. R., Tolla, G. E., Bernier, J., & Juarez, B. (2016). Value of locations for representing megaenvironments and for discriminating yield of watermelon in the US. Crop Science, 56(4), 1726-1735. doi: 10.2135/cropsci2015.11.0698.##Doolittle, D. P. (1987). Population Genetics: Basic Principles. Springer, New York.##Eberhart, S. T., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36-40. doi: 10.2135/cropsci1966.0011183X000600010011x.##Eisemann, R. L., Cooper, M., & Woodruff, D. R. (1990). Beyond the analytical methodology, better interpretation and exploitation of GE interaction in plant breeding. In: Kang, M. S. (Ed.). Genotype-by-Environment Interaction and Plant Breeding. Louisiana State University Agricultural Center, Baton Rouge, Louisiana, pp. 108-117.##Farokhzadeh, S., Shahsavand Hassani, H., Mohammadi-Nejad, G., & Zinati, Z. (2022). Evaluation of grain yield stability of tritipyrum as a novel cereal in comparison with triticale lines and bread wheat varieties through univariate and multivariate parametric methods. PLoS ONE, 17(9), e0274588. doi: 10.1371/journal.pone.0274588.##Farshadfar, A. (2015). The interaction effect of genotype and environment in plant breeding. Kermanshah Branch, Islamic Azad University Press, 531 p.##Farshadfar, E., Sabaghpour, S. H., & Zali, H. (2012). Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crop Science, 6(3), 514-524.##Fernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Frontiers in Plant Science, 12, 777842. doi: 10.3389/fpls.2021.777842.##Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742-754. doi: 10.1071/AR9630742.##Flores, F., Moreno, M., & Cubero, J. (1998). A comparison of univariate and multivariate methods to analyze G×E interaction. Field Crops Research, 56(3), 271-286. doi: 10.1016/S0378-4290(97)00095-6.##Fox, P. N., Skovmand, B., Thompson, B. K., & Braun, H. J. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica, 47(1), 57-64. doi: 10.1007/BF00040364.##Francis, T., & Kannenberg, L. (1978). Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58(4), 1029-1034.  doi: 10.4141/cjps78-15.##Freeman, G. H., & Perkins, J. M. (1971). Environmental and genotype-environmental components of variability VIII. Relations between genotypes grown in different environments and measures of these environments. Heredity, 27, 15-23. doi: 10.1038/hdy.1971.67.##Fripp, Y. J., & Caten, C. E. (1971). Genotype-environment interactions in Schizophyllum commune. I. Analysis and character. Heredity, 27, 393-407. doi: 10.1038/hdy.1971.103.##Gauch H. G. Jr, (1992). AMMI analysis on yield trials. In: Fox, P. N., & Hettel, G. P. (Eds.). Wheat Special Report No. 8: Management and Use of International Trial Data for Improving Breeding Efficiency. pp. 9-12. CIMMYT, Mexico.##Gupta, C., & Salgotra, R. K. (2022). Epigenetics and its role in affecting agronomical traits. Frontiers in Plant Science, 13, 925688. doi: 10.3389/fpls.2022.925688.##Handel, A. E., Ebers, G. C., & Ramagopalan, S. V. (2009). Epigenetics: molecular mechanisms and implications for disease. Trens in Molecular Medicine, 16(1), 7-16. doi: 10.1016/j.molmed.2009.11.003.##Hanson, W. D. (1970). Genotypic stability. Theoretical & Applied Genetics, 40, 226-231. doi: 10.1007/BF00285245.##Hashim, N., Rafii, M. Y., Oladosu, Y., Ismail, M. R., Ramli, A., Arolu, F., & Chukwu, S. (2021). Integrating multivariate and univariate statistical models to investigate genotype-environment interaction of advanced fragrant rice genotypes under rainfed condition. Sustainability, 13(8), 4555. doi: 10.3390/su13084555.##Hernandez, C. M., Crossa, J., & Castillo, A. (1993). The area under the function: an index for selecting desirable genotypes. Theoretical & Applied Genetics, 87, 409-415. doi: 10.1007/BF00215085.##Holland, J. B., Nyquist, W. E., Cervantes-Martínez, C. T., & Janick, J. (2002). Estimating and interpreting heritability for plant breeding: An update. In: Janick, J. (Ed.). Plant Breeding Reviews. Vol. 22. pp. 9-112. doi: 10.1002/9780470650202.ch2.##Huehn, M. (1990a). Non-parametric measures of phenotypic stability. Part I. Theory. Euphytica, 47, 189-194. doi: 10.1007/BF00036213.##Huehn, M. (1990b). Non-parametric measures of phenotypic stability: Part II. Application. Euphytica, 47, 195-201. doi: 10.1007/BF00024242.##Huehn, M. (1996). Non-parametric analysis of genotype × environment interactions by ranks. Genotype by environment interaction. CRC Press, Boca Raton, FL. pp. 213-228.##Jalaluddin, M. D., & Harrison, S. A. (1993). Repeatability of stability statistics for grain yield in wheat. Crop Science, 33, 720-725. doi: 10.2135/cropsci1993.0011183X003300040017x.##Kakoulidou, I., Avramidou, E. V., Baránek, M., Brunel-Muguet, S., Farrona, S., Johannes, F., Kaiserli, E., Lieberman-Lazarovich, M., Martinelli, F., Mladenov, V., Testillano, P. S., Vassileva, V., & Maury, S. (2021). Epigenetics for crop improvement in times of global change. Biology, 10(8), 766.  doi: 10.3390/biology10080766.##Kang, M. S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications, 16(1/2), 113-115. https://www.jstor.org/stable/23782771.##Kang, M. S. (1993a). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85(3), 754-757. doi: 10.2134/agronj1993.00021962008500030016x.##Kang, M. S. (1993b). Issues in GE interaction. In: Rao, V., Hanson, I. E., & Rajanaidu, N. (Eds.). Genotype-Environment Interaction Studies in Perennial Tree Crops. Palm Oil Research Institute of Malaysia, Kuala Lumpur, Malaysia. pp. 67-73.##Kang, M. S. (1997). Using genotype-by-environment interaction for crop cultivar development. In: Sparks, D. L. (Ed.). Advances in Agronomy. Vol. 62. Academic Press. pp. 199-252. doi: 10.1016/S0065-2113(08)60569-6.##Kang, M. S. (2020). Genotype-environment interaction and stability analyses: An update. In: Kang, M. S. (Ed.). Quantitative Genetics, Genomics, and Plant Breeding. 2nd Edition. CABI. pp. 140-161. doi: 10.1079/9781789240214.0140.##Kang, M. S., & Gauch, H. G., Jr. (1996). Genotype-by-Environment Interaction. CRC Press, Boca Raton, Florida. doi: 10.1201/9780367802226.##Kang, M. S., & Miller, J. D. (1984). Genotype × environment interactions for cane and sugar yield and their implications in sugarcane breeding. Crop Science, 24(3), 435-440. doi: 10.31742/ISGPB.83.1.14.##Karimizadeh, R., Hosseinpour, T., Alt Jafarby, J., Shahbazi Homonlo, K., & Armion, M. (2021). Evaluation of genotype × environment interaction and determining grain yield stability of durum wheat genotypes in uniform regional yield trials in semi-warm rainfed areas. Plant Genetic Research, 7(2), 25-40. [In Persian]. doi: 10.52547/pgr.7.2.3.##Karimizadeh, R., Mohammadi, M., Sabaghnia, N., & Shefazadeh, M. K. (2012). Using Huehn’s nonparametric stability statistics to investigate genotype × environment interaction. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 293-301. doi: 10.15835/nbha4017593.##Karimizadeh, R., Vaez, B., Hosseinpour, T., Mehrban, A., & Ghojagh, H. (2009). Study on correlation and repeatability of parametric and multivariate statistics of grain yield stability in rainfed barley. Journal of Crop Production & Processing, 13(48), 53-62. [In Persian]. dor: 20.1001.1.22518517.1388.13.48.5.0.##Kebede, G., Worku, W., Jifar, H., & Feyissa, F. (2023). Grain yield stability analysis using parametric and nonparametric statistics in oat (Avena sativa L.) genotypes in Ethiopia. Grassland Research, 2(3), 182-196. doi: 10.1002/glr2.12056.##Khalili, M., & Pour-Aboughadareh, A. (2016). Parametric and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural Science & Technology, 18(3), 789-803. dor: 20.1001.1.16807073.2016.18.3.20.2.##Lado, B., Barrios, P. G., Quincke, M., Silva, P., & Gutiérrez, L. (2016). Modeling genotype × environment interaction for genomic selection with unbalanced data from a wheat breeding program. Crop Science, 56, 2165-2179. doi: 10.2135/cropsci2015.04.0207.##Lin, C. S., & Binns, M. R. (1988a). A method of analyzing cultivar × location × year experiment: A new stability parameter. Theoretical & Applied Genetics, 76, 425-430. doi: 10.1007/BF00265344.##Lin, C. S., & Binns, M. R. (1988b). A superiority measure of cultivar performance for cultivar × location data. Canadian Journal of Plant Science, 68(1), 193-198. doi: 10.4141/cjps88-022.##Lin, C. S., & Binns, M. R. (1991). Genetic properties of four types of stability parameters. Theoretical & Applied Genetics, 82, 505-509. doi: 10.1007/BF00588606.##Lin, C. S., & Binns, M. R. (1994). Concepts and methods for analyzing regional trial data for cultivar and location selection. In: Janick, J. (Ed.). Plant Breeding Reviews. Vol. 12. pp. 271-297. doi: 10.1002/9780470650493.ch10.##Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: Where do we stand? Crop Science, 26(5), 894-900. doi: 10.2135/cropsci1986.0011183X002600050012x.##Macholdt, J., Piepho, H. P., & Honermeier, B. (2019). Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. European Journal of Agronomy, 102, 14-22. doi: 10.1016/j.eja.2018.11.003.##Mohammadi, R., & Amri, A. (2012). Analysis of genotype × environment interaction in rain-fed durum wheat of Iran using GGE-biplot and non-parametric methods. Canadian Journal of Plant Science, 92, 757-770. doi: 10.4141/cjps2011-13.##Mooers, C. A. (1921). Agronomic placement of varieties. Agronomy Journal, 13(9), 579-586. doi: 10.2134/agronj1921.00021962001300090003x.##Moreno-Gonzalez, J., Crossa, J., & Cornelius, P. L. (2004). Genotype × environment interaction in multi-environment trials using shrinkage factors for AMMI models. Euphytica, 137, 119-127. 10.1023/B:EUPH.0000033841.05593.15.##Mortazavian, S. M., & Azizi-Nia, S. (2014). Nonparametric stability analysis in multi-environment trial of canola. Turkish Journal of Field Crops, 19(1), pp. 108-117. 10.17557/tjfc.41390.##Moumeni, A., Mohaddesi, A., Amooughli-Tabari, M., Tavassoli-Larijani, F., & Khosravi, V. (2019). Stability analysis and genotype × environment interaction for grain yield of rice (Oryza sativa L.) promising breeding lines. Iranian Journal of Crop Sciences, 20(4), 329-344. [In Persian]. dor:‎ 20.1001.1.15625540.1397.20.4.5.4.##Nassar, R., & Hühn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics, 43(1), 45-53. doi: 10.2307/2531947.##Nassar, R., Léon, J., & Hühn, M. (1994). Tests of significance for combined measures of plant stability and performance. Biometrical Journal, 36(1), 109-123. doi: 10.1002/bimj.4710360115.##Olivoto, T., Lúcio, A. D., da Silva, J. A., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019). Mean performance and stability in multi‐environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960. doi: 10.2134/agronj2019.03.0204.##Pauli, D., Chapman, S. C., Bart, R., Topp, C. N., Lawrence-Dill, C. J., Poland, J., & Gore, M. A. (2016). The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiology, 172(2), 622-634. doi: 10.1104/pp.16.00592.##Perkins, J. M., & Jinks, J. L. (1968). Environmental and genotype-environmental components of variability. Heredity, 23(3), 339-356. doi: 10.1038/hdy.1968.48.##Piepho, H. P., & Blancon, J. (2023). Extending Finlay–Wilkinson regression with environmental covariates. Plant Breeding, 142(5), 621-631. doi: 10.1111/pbr.13130.##Pinthus, M. J. (1973). Estimate of genotypic value: A proposed method. Euphytica, 22(1), 121-123. doi: 10.1007/BF00039055.##Plaisted, R. L. (1960). A shorter method for evaluating the ability of selections to yield consistently over locations. American Potato Journal, 37, 166-172. doi: 10.1007/BF02855271.##Plaisted, R. L., & Peterson, L. C. (1959). A technique for evaluating the ability of selections to yield consistently in different locations or seasons. American Potato Journal, 36, 381-385. doi: 10.1007/BF02852735.##Pour-Aboughadareh, A., Barati, A., Koohkan, S. A., Jabari, M., Marzoghian, A., Gholipoor, A., Shahbazi-Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022a). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre, 46(1), 19. doi: 10.1186/s42269-022-00703-5.##Pour-Aboughadareh, A., Khalili, M., Poczai, P., & Olivoto, T. (2022b). Stability indices to deciphering genotype-by-environment interaction (GEI) effect: An applicable review for use in plant breeding programs. Plants, 11(3), 414. doi: 10.3390/plants11030414.##Raiger, H. L., & Prabhakaran, V. T. (2001). A study on the performance of a few non-parametric stability measures using pearl-millet data. Indian Journal of Genetics & Plant Breeding, 61(1), 7-11.##Raiger, H. L., & Prabhakaran, V. T. (2000). A statistical comparison between non-parametric and parametric stability measures. Indian Journal of Genetics & Plant Breeding, 60(4), 417-432.##Reyes-Herrera, P. H., Muñoz-Baena, L., Velásquez-Zapata, V., Patiño, L., Delgado-Paz, O. A., Díaz-Diez, C. A., & Cortés, A. J. (2020). Inheritance of rootstock effects in avocado (Persea americana Mill.) cv. Hass. Frontiers in Plant Science, 11, 555071. doi: 10.3389/fpls.2020.555071.##Roemer, T. (1917). Sind die ertragsreichen Sorten ertragssicherer. Mitteilungen der DLG, 32, 87-89. [In German].##Roy, D. (2000). Plant breeding analysis and exploitation of variation. Alpha Science International, UK.##Sabaghnia, N., Karimizadeh, R., & Mohammadi, M. (2012). The use of corrected and uncorrected nonparametric stability measurements in durum wheat multi-environmental trials. Spanish Journal of Agricultural Research, 10(3), 722-730. doi: 10.5424/sjar/2012103-384-11.##Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants. Annual Reviews of Ecological Systematics, 17, 667-693. doi: 10.1146/annurev.es.17.110186.003315.##Sharifi, P., Erfani, R., Mohadesi, A., Abbassian, A., Yousefi, M. M., Aminpanah, H., & Saeedi, M. (2020). Analysis of the stability of grain yield in some rice genotypes using parametric and non-parametric univariate methods. Crop Production, 13(3), 85-106. [In Persian]. doi: 10.22069/ejcp.2021.17883.2315.##Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29(2), 237-245. doi: 10.1038/hdy.1972.87.##Silvey, V. (1981). The contribution of new wheat, barley and oat varieties to increasing cereal yield in England and Wales 1947-78. Journal of the National Institute of Agricultural Botany, 15, 399-412.##Singh, M., & Ceccarelli, S. (1995). Estimation of heritability using varietal trials data from incomplete blocks. Theoretical & Applied Genetics, 90, 142-145. doi: 10.1007/BF00221008.##Soroush, H. R., & Rabiei, B. (2009). Evaluation of yield stability of rice genotypes in different locations of Guilan province. Journal of Agricultural Knowledge, 18(4), 106-114. [In Persian].##Studinicki, M., Kang, M. S., Iwańska, M., Oleksiak, T., Wo´jcik-Grant, E., & Mądry, W. (2019). Consistency of yield ranking and adaptability patterns of winter wheat cultivars between multi-environmental trials and farmer surveys. Agronomy, 9(5), 245. doi: 10.3390/agronomy9050245.##Syukur, M., Sujiprihati, S., Yunianti, R., & Kusumah, D. A. (2011). Parametric stability analysis for yield of chili pepper (Capsicum annuum L.). Jurnal Agronomi Indonesia, 39(1), 31-37. doi: 10.24831/jai.v39i1.13185.##Taherian, M., Bihamta, M. R., Peyghambari, S. A., Alizadeh, H., & Rasoulnia, A. (2019). Stability analysis and selection of salinity tolerant barley genotypes. Journal of Crop Breeding, 11(29), 93-103. doi: 10.29252/jcb.11.29.93.##Tai, G. C. C. (1971). Genotypic stability analysis and its application to potato regional trials. Crop Science, 11(2), 184-190. doi: 10.2135/cropsci1971.0011183X001100020006x.##Tarinejad, A. (2016). Investigating the compatibility of bread wheat genotypes using Eberhart-Russell, simultaneous selection, bi-plot and non-parametric ranking methods. Cereal Research, 6(4), 451-464. dor: 20.1001.1.22520163.1395.6.4.4.8.##Taudt, A., Tatche, M. C., & Johannes, F. (2016). Genetic sources of population epigenomic variation. Nature Reviews Genetics, 17, 319-332. doi: 10.1038/nrg.2016.45.##Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph. D. Dissertation. PJ School IARI, New Delhi, India.##Tonosaki, K., Fujimoto, R., Dennis, E. S., Raboy, V., & Osabe, K. (2022). Will epigenetics be a key player in crop breeding? Frontiers in Plant Science, 13, 958350. doi: 10.3389/fpls.2022.958350.##Vaezi, B., Pour-Aboughadareh, A., Mehraban, A., Hossein-Pour, T., Mohammadi, R., Armion, M., & Dorri, M. (2018). The use of parametric and non-parametric measures for selecting stable and adapted barley lines. Archives of Agronomy & Soil Science, 64(5), 597-611. doi: 10.1080/03650340.2017.1369529.##Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Mehraban, A., Hossein-Pour, T., Koohkan, E., Ghasemi, S., Moradkhani, H., & Siddique, A. H. M. (2019). Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica, 215, 63. doi: 10.1007/s10681-019-2386-5.##van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Science, 56(5), 2119-2140. doi: 10.2135/cropsci2015.06.0375.##Witcombe, J. R., & Whittington, W. J. (1971). A study of the genotype-environment interaction shown by germinating seeds of Brassica napus. Heredity, 26, 397-411. doi: 10.1038/hdy.1971.51.##Wricke, G. (1962). Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen. Zeitschrift für Pflanzenzüchtung, 47, 92-96. [In German].##Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. Theoretical & Applied Genetics, 129(4), 653-673. doi: 10.1007/s00122-016-2691-5.##Yan, W. (2016). Analysis and handling of G × E in a practical breeding program. Crop Science, 56(5), 2106-2118. doi: 10.2135/cropsci2015.06.0336.##Yan, W., & Kang, M. S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton. doi: 10.1201/9781420040371.##Yates, F., & Cochran, W. G. (1938). The analysis of groups of experiments. The Journal of Agricultural Science, 28(4), 556-580. doi: 10.1017/S0021859600050978.