انتخاب ژنوتیپ های برتر گندم نان (Triticum aestivum L.) با استفاده از شاخص های گزینشی تحت شرایط تنش خشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، عضو انجمن پژوهشگران جوان دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانشیار، پژوهشکده فناوری تولیدات گیاهی و گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه شهید باهنر کرمان، کرمان، ایران

3 استادیار، گروه فیزیولوژی مولکولی، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

مؤثرترین روش جهت بهبود ژنتیکی عملکرد به­عنوان یک صفت چندژنی، استفاده از گزینش غیرمستقیم از طریق صفات دیگر و گزینش هم­زمان بر مبنای شاخص­های گزینش مناسب است. هدف از اجرای این پژوهش، انتخاب لاین­های برتر گندم نان با استفاده از شاخص­های گزینشی تحت شرایط تنش خشکی بود. برای این منظور، 305 لاین خالص گندم حاصل از تلاقی ارقام روشن و فلات به­همراه چهار رقم شاهد شامل روشن، فلات، مهدوی و شاه­پسند در قالب طرح آگمنت در مزرعه تحقیقاتی دانشگاه شهید باهنر کرمان در سال زراعی 93-1392 مورد ارزیابی قرار گرفتند. به­منظور اعمال تنش خشکی، آبیاری در مرحله ظهور سنبله قطع شد و عملکرد دانه به­همراه برخی صفات زراعی مورد ارزیابی قرار گرفت. از بین صفات اندازه­گیری شده، صفات وزن دانه­های سنبله اصلی، وزن دانه­های تک­بوته، تعداد دانه در بوته، وزن هزار دانه، تعداد سنبله در بوته، وزن سنبله اصلی، طول برگ پرچم، طول سنبله و وزن بوته همبستگی ژنتیکی بالایی با عملکرد دانه داشتند. پاسخ به گزینش مستقیم و همبسته این صفات با عملکرد دانه نیز محاسبه و مشاهده شد که صفات تعداد سنبله در بوته و تعداد دانه در بوته بالاترین کارآیی گزینش را دارند. شاخص­های گزینش مختلف تهیه شده با استفاده از این صفات، همبستگی ژنتیکی بالایی با عملکرد دانه نشان دادند. علاوه بر آن، کارآیی نسبی گزینش و بهره مورد انتظار از شاخص با استفاده از شاخص اسمیت - هیزل نسبت به شاخص پسک - بیکر بیشتر بود. بنابراین، استفاده از شاخص بهینه می­تواند برای انتخاب ژنوتیپ­های مناسب در برنامه­های اصلاحی گندم مؤثر باشد. در نهایت، بر اساس هر شاخص 30 لاین برتر انتخاب و از مقایسه آن­ها هفت لاین امیدبخش برای ارزیابی­های بیشتر جهت قرار گرفتن در فرایند معرفی به زارعین شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Selection of elite lines in bread wheat (Triticum aestivum L.) using selection indices under drought stress conditions

نویسندگان [English]

  • Maryam Dorrani-Nejad 1
  • Ghasem Mohammadi-Nejad 2
  • Babak Nakhoda 3
1 Ph. D. Student, Member of Young Researcher Association, Shahid Bahonar University of Kerman, Kerman, Iran
2 Assoc. Prof., Research and Technology Institute of Plant Production (RTIPP) and Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3 Assist. Prof., Dept. of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

The most effective approach for genetic improvement of grain yield as a polygenic trait is indirect selection by other traits and simultaneous selection based on the suitable selection indices. The objective of this research was to select the elite lines of bread wheat by selection indices approach. 305 pure lines of bread wheat derived from a cross between Roshan × Falat as well as four check varieties, Roshan, Falat, Mahdavi and Shahpasand, were evaluated as an augmented design at research field of Shahid Bahonar University of Kerman 2013-2014 growing season. In order to apply drought stress, irrigation was cut-off at the emergence stage of the spike and grain yield and other agronomic traits were measured. Among the studied traits, grain weight of main spike, grain weight of single plant, number of grain per plant, 1000- grain weight, number of spike per plant, main spike weight, flag leaf length, spike length and plant weight showed highly genetic correlations with grain yield. Direct and correlated response to selections for grain yield for these traits were calculated. The results indicated that number of spike per plant and number of grain per plant had the highest efficiency for indirect selection. The different selection indices constructed by these traits had the high genetic correlation with grain yield. Moreover, relative efficiency of selection and expected gain of selection index using the Smith-Hazel index was higher than the Pesek-Baker index. Therefore, using the optimum index can be effective in breeding programs of wheat to improve grain yield under drought stress. Finally, 30 elite lines were selected based on each selection index and from their comparison, seven superior and promising lines were identified for further evaluations and introduction to farmers.

کلیدواژه‌ها [English]

  • Cut-off irrigation
  • Pesek-Baker index
  • Simultaneous selection
  • Smith-Hazel index
Alexander, W. L., Smith, E. L. and Dhanasobhan, C. 1984. A comparison of yield and yield component selection in winter wheat. Euphytica 33: 953-961.##Baker, R. J. 1986. Selection indices in plant breeding. CRC Press, Inc., Boca Raton, Florida. 218 p.##Blum, A. 1999. Towards standards assays of drought resistance in crop plants. Workshop on Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water Limited Environment. CIMMYT. Mexico. pp: 23-27.##Brim, C. A., Johnson, H. W. and Cockerham, C. C. 1959. Multiple selection criteria in soybean. Agronomy Journal 51: 42-46.##Chapman, S. C. and Edmeades, G. O. 1999. Selection improves drought tolerance in tropical maize populations. Crop Science 39: 1315-1324.##Cone, A. E., Slafer, G. A. and Halloran, G. M. 1995. Effects of moisture stress on leaf appearance, tillering and other aspects of development in Triticum tauschii. Euphytica 86: 55-64.##Dabholkar, A. R. 1992. Elements of biometrical genetics. Concept Publishing Company, New Delhi, 431 p.##Dawari, N. H. and Luthra, O. P. 1991. Character association studies under high and low environments in wheat (Triticum aestivum L.). Indian Journal of Agricultural Research 25: 68-72.##Emrani, S., Rezai, A. and Arzani A. 2008. Comparison of selection indices for yield and related traits of barley under nitrogen stress and non-stress conditions. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science 11: 183-194. (In Persian with English Abstract).##Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to quantitative genetics. Longman. Harlow, UK. pp: 187-246.##Fazlalipour, M., Rabiei, B., Samizadeh Lahiji, H. and Rahim Souroush, H. 2007. Index selection in an F3 rice population. Iranian Journal of Agricultural Sciences (Journal of Agriculture) 38 (2): 385-397. (In Persian with English Abstract).##Gebre, H. and Later, E. N. 1996. Genetic response to index selection for grain yield, kernal weight and percent protein in four wheat crosses. Plant Breeding 115: 459-464.##Granate, M. J., Cruz, C. D. and Pacheco, C. A. P. 2002. Prediction of genetic gain with different selection indices in popcorn CMS-43. Pesquisa Agropecuária Brasileira 37 (7): 1001-1008.##Hazel, L. 1943. The genetic basis for construction selection indices. Genetics28: 476-490.##Holland, J. B., Frey, K. J. and Hammond, E. G. 2001. Correlated response of fatty acid composition, grain quality and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 122: 69-79.##Kendell, B., Rasmusson, D. C. and Galla-Meagher, M. 2000. Enhancing yield of semidwarf barley. Crop Science 40: 352-358.##McNeal, F. H., Qualset, C. O., Baldrigge, D. E. and Stewart, V. R. 1978. Selection for yield and yield components in wheat. Crop Science 18: 795-799.##Pesek, J. and Baker, R. J. 1969. Desired improvement in relation to selection indices. Canadian Journal of Plant Science49: 803-804.##Rahimi, M. and Rabiei, B. 2011. The application of selection indices on improvement of grain yield in rice (Oryza sativa L.). Agronomy Journal (Pajouhesh and Sazandegi) 90: 39-46. (In Persian with English Abstract).##Rezai, A. M. 1994. Selection indices in plant breeding. Proceeding of 3th Iranian Crop Science and Plant Breeding Congress. Tabriz University. pp: 105-134. (In Persian).##Rezai, A. A. and Yousefi Azar, M. 2008. Comparison of direction and indirection selection methods based on selection indices in wheat lines in drought and non drought condition. Journal of Science and Technology of Agriculture and Natural Resources 45: 21-32. (In Persian with English Abstract).##Richards, R. A. 1996. Defining selection criteria to improve yield under drought. Plant Growth Regulation 20: 157-166.##Sabouri, H., Rabiei, B. and Fazlalipour, M. 2008. Use of selection indices based on multivariate analysis for improving grain yield in rice. Rice Science 15 (4): 303-310.##Sabouri, H., Mohammadi-Nejad, G. and Fazlalipour, M. 2012. Selection for yield improvement using of multivariation statistical methods in rice. Iranian Journal of Field Crops Research
9: 639-650. (In Persian with English Abstract). ##Sanchez-Diaz, M., Garcia, J. L., Antolin, M. C. and Araus, J. L. 2002. Effects of soil drought and atmospheric humidity on yield, gas exchange and stable carbon isotope composition of barley. Photosynthesis 40: 415-421.##Smith, H. F. 1936. A discrimination function for plant selection. Annals of Eugenics7: 240-250.##Ud-Din, N., Carver, B. F. and Clutter, A. C. 1992. Genetic analysis and selection for wheat yield in drought stressed and irrigated environments. Euphytica 62: 89-96.##Williams, J. S. 1962. The evaluation of a selection index. Biometrics 18: 375-393.