مطالعه فیلوژنی و بیان ژن های پلی آمین اکسیداز (PAO) در ذرت (Zeamays L.)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه بیوتکنولوژی کشاورزی،دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار، گروه بیوتکنولوژی کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 استادیار، گروه بیوتکنولوژی کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

پلی­آمین­ها به­وسیله آنزیم‌های آمین­‌اکسیداز شامل آمینواکسیدازهای حاوی مس (CuPAO) و پلی­آمین اکسیدازهای (PAO) وابسته به FAD به­صورت اکسیداتیو دآمینه می­شوند. شواهد زیادی مبنی بر نقش ضروری پلی­آمین­‌اکسیدازها در رشد و نمو گیاهان مانند اندام­زایی و پیری و نیز پاسخ به تنش­های زیستی و غیرزیستی وجود دارد. در دسترس قرار گرفتن توالی ژنوم ذرت فرصت بسیار مناسبی برای مستندسازی، گروه‌بندی و نیز مطالعات ژنومیکس مقایسه­ای مهیا ساخته است. در این مطالعه از طریق آنالیزهای بیوانفورماتیک، ZmPAO1تاZmPAO9 در ژنوم ذرت شناسایی شد. آنالیز فیلوژنتیک نشان داد که ژن‌های ZmPAO همانند اورتولوگ آن‌ها در آرابیدوپسیس و برنج به سه گروه اصلی تقسیم می­شوند. ضمن اینکه ژن­های PAO ذرت ارتباط تکاملی نزدیک­تری با ژن­های برنج در مقایسه با آرابیدوپسیس دارند. مطالعه ساختار ژنی نشان داد که تعداد اینترون‌های ZmPAO از صفر تا نه متغیر است و روی چهار کروموزوم از ده کروموزوم ذرت قرارگرفتهاست. مضاعف شدگی تاندوم و سگمنتال موجب افزایش تعداد اعضای خانواده ژنی PAO در ذرت شده­اند. با استفاده از داده­های ریزآرایه در دسترس، پروفایل رونوشت‌برداریژن­هایZmPAO در فرآیندهای رشد و نمو ذرت ارزیابی و نتایج نشان­دهنده نقش احتمالی آن­ها در تنظیم نمو بود. نتایج این مطالعه اطلاعات پایه‌ای را ارایه کرد که برای مطالعات عملکردی آینده در مورد فعالیت ژن­های ZmPAO در بافت­ها، نقش آن‌ها در نمو و نیز در پاسخ به تنش­ها مفید و موثر است.

کلیدواژه‌ها


عنوان مقاله [English]

Phylogenetic and expression analysisof polyamine oxidase (PAO) genes in maize (Zea mays L.)

نویسندگان [English]

  • Amin Abedi 1
  • Mohammad Mehdi Sohani 2
  • Reza Shirzadian 3
1 Graduated Ph. D., Dept. of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Assoc. Prof., Dept. of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Assist. Prof., Dept. of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

Polyamines are oxidativelydeaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs). PAOs are associated with polyamine catabolism in peroxisome, apoplast and cytoplasm. In plants, increasing evidences support that PAO genes play an essential roles in growth and developmental processes such as organogenesis, senescence, and also responses to abiotic and biotic stresses. The availability of the maize genome sequences has provided an excellent opportunity for whole-genome annotation, classification and comparative genomics research. In this study, through bioinformatics analysis approaches, nine putative PAO (ZmPAO1–ZmPAO9) were identified in maize genome. According to Phylogenetic analysis ZmPAOs can be divided into three major groups as found in their orthologous in Arabidopsis and rice. It is also demonstrated that maize PAO proteins are more closely related to rice than those in Arabidopsis. Gene structural analysis showed that the ZmPAOs have zero to nine introns and they are distributed across 4 out of 10 chromosomes in maize. Duplication pattern analysis shows that segmental and tandem duplication are the main reasons for maize PAOs expansion. Using public microarray data, the roles of ZmPAOs in growth and development processes were assessed. These results have been provided evidences regarding the important functions of the gene family in maize developmental regulation. These results provide a basis for further functional characterization of ZmPAOs at the tissue/developmental level and in response to stresses. Using public microarray data, ZmPAO expression profiles strongly suggested that ZmPAOs have a role in growth and development processes.

کلیدواژه‌ها [English]

  • Bioinformatics
  • Duplication
  • Evolution
  • Gene structure
  • Homologue
Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C. and Tiburcio, A. F. 2010. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 231(6): 1237-1249.##Angelini, R., Cona, A., Federico, R., Fincato, P., Tavladoraki, P. and Tisi, A. 2010. Plant amine oxidases “on the move”: An update. Plant Physiology and Biochemistry 48(7): 560-564.##Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E. and Gasteiger, E. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research 40(W1): W597-W603.##Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S. and Sonnhammer, E. L. 2004. The Pfam protein families database. Nucleic Acids Research 32: D138-D141.      ##Cao, J. and Shi, F. 2012. Evolution of the RALF gene family in plants: Gene duplication and selection patterns. Evolutionary Bioinformatics 8: 271-292.         ##Chen, B.-X., Li, W.-Y., Gao, Y.-T., Chen, Z.-J., Zhang, W.-N., Liu, Q.-J. and Liu, J. 2016. Involvement of polyamine oxidase-produced hydrogen peroxide during coleorhiza-limited germination of rice seeds. Frontiers in Plant Science 7: 1219.##Cheng, X.-Q., Zhu, X.-F., Tian, W.-G., Cheng, W.-H., Sun, J., Jin, S.-X. and Zhu, H.-G. 2017. Genome-wide identification and expression analysis of polyamine oxidase genes in upland cotton (Gossypium hirsutum L.). Plant Cell, Tissue and Organ Culture 129(2): 237-249.##Cona, A., Rea, G., Angelini, R., Federico, R. and Tavladoraki, P. 2006. Functions of amine oxidases in plant development and defence. Trends in Plant Science 11(2): 80-88. ##Dash, S., Van Hemert, J., Hong, L., Wise, R. P. and Dickerson,J.A.2012.PLEXdb:Gene expression resources for plants and plant pathogens. Nucleic Acids Research 40(D1): D1194-D1201.##Duarte, J. M., Cui, L., Wall, P. K., Zhang, Q., Zhang, X., Leebens-Mack, J. and Altman, N. 2006. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Molecular Biology and Evolution 23(2): 469-478.##Fincato, P., Moschou, P. N., Ahou, A., Angelini, R., Roubelakis-Angelakis, K. A., Federico, R. and Tavladoraki, P. 2012. The members of Arabidopsis thalianaPAO gene family exhibit distinct tissue-and organ-specific expression pattern during seedling growth and flower development. Amino Acids 42(2-3): 831-841.##Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R. and Mistry, J. 2014. Pfam: The protein families database. Nucleic Acids Research 42(D1): D222-D230.##Finn, R. D., Clements, J. and Eddy, S. R. 2011. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research 39: W29-W37.##Fu, X.-Z., Chen, C.-W., Wang, Y., Liu, J.-H. and Moriguchi, T. 2011. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: Involvement of H2O2 production and transcriptional alteration. BMC Plant Biology 11(1): 55.##Ghuge, S. A., Tisi, A., Carucci, A., Rodrigues-Pousada, R. A., Franchi, S., Tavladoraki, P. and Cona, A. 2015. Cell wall amine oxidases: New players in root xylem differentiation under stress conditions. Plants 4(3): 489-504.##Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J. and Putnam, N. 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research 40(D1): D1178-D1186.##Groppa, M. and Benavides, M. 2008. Polyamines and abiotic stress: Recent advances. Amino Acids 34(1): 35-45.    ##Gu, T., Han, Y., Huang, R., McAvoy, R. J. and Li, Y. 2016. Identification and characterization of histone lysine methylation modifiers in Fragaria vesca. Scientific Reports 6: 23581.           ##Hanada, K., Zou, C., Lehti-Shiu, M. D., Shinozaki, K. and Shiu, S.-H. 2008. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant physiology 148(2): 993-1003.          ##Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J. and Gao, G. 2015. GSDS 2.0: An upgraded gene feature visualization server.Bioinformatics 31(8): 1296-1297.##Hu, L. and Liu, S. 2012. Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55(3): 245-256.       ##Huang, W., Xian, Z., Kang, X., Tang, N. and Li, Z. 2015. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology 15(1): 209. ##Hundertmark, M. and Hincha, D. K. 2008. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9(1): 118. ##Jiang, S.-Y., Ma, Z. and Ramachandran, S. 2010. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology 10(1): 79.##Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis ver. 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870-1874.##Larkin, M. A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P. A., McWilliam, H. and Lopez, R. 2007. Clustal W and Clustal X ver. 2.0.Bioinformatics 23(21): 2947-2948. ##Lee, T.-H., Tang, H., Wang, X. and Paterson, A. H. 2013. PGDD: A database of gene and genome duplication in plants. Nucleic Acids Research 41(D1): D1152-D1158.##Liu, J.-H., Wang, W., Wu, H., Gong, X. and Moriguchi, T. 2015. Polyamines function in stress tolerance: From synthesis to regulation. Frontiers in Plant Science 6: 827.       ##Liu, T., Wook Kim, D., Niitsu, M., Berberich, T. and Kusano, T. 2014. Polyamineoxidase-1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis polyamine oxidase-5. Plant Signaling and Behavior 9(9): e29773.##Masson, P. H., Takahashi, T. and Angelini, R. 2017. Editorial: Molecular mechanisms underlying polyamine functions in plants. Frontiers in Plant Science 8: 14.##Moschou, P. N., Paschalidis, K. A. and Roubelakis-Angelakis, K. A. 2008. Plant polyamine catabolism: The state of the art. Plant Signaling and Behavior 3(12): 1061-1066.##Rodriguez, A. A., Maiale, S. J., Menéndez, A. B. and Ruiz, O. A. 2009. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. Journal of Experimental Botany 60(15): 4249-4262.##Sekhon, R. S., Lin, H., Childs, K. L., Hansey, C. N., Buell, C. R., de Leon, N. and Kaeppler, S. M. 2011. Genome-wide atlas of transcription during maize development. The Plant Journal 66(4): 553-563.##Sharp, P. A. 1981. Speculations on RNA splicing. Cell 23(3): 643-646.##Shibaya, T., Hori, K., Ogiso-Tanaka, E., Yamanouchi, U., Shu, K., Kitazawa, N. and Wu, J. 2016. Hd18, encoding histone acetylase related to Arabidopsis Floweringlocus D, is involved in the control of flowering time in rice. Plant and Cell Physiology 57(9): 1228-1238.##Sonnhammer, E. L. and Koonin, E. V. 2002. Orthology, paralogy and proposed classification for paralog subtypes. Trends in Genetics 18(12): 619-620.##Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J. L. and Messing, J. 2004. Close split of sorghum and maize genome progenitors. Genome Research 14(10): 1916-1923.##Takahashi, Y., Cong, R., Sagor, G., Niitsu, M., Berberich, T. and Kusano, T. 2010. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Reports 29(9): 955-965.##Wang, Q., Liu, J., Wang, Y., Zhao, Y., Jiang, H. and Cheng, B. 2015. Systematic analysis of the maize PHD-finger gene family reveals a subfamily involved in abiotic stress response. International Journal of Molecular Sciences 16(10): 23517-23544.##Wang, W. and Liu, J.-H. 2015. Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis). Gene 555(2): 421-429.##Wu, J., Shang, Z., Wu, J., Jiang, X., Moschou, P. N., Sun, W. and Zhang, S. 2010. Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+ permeable channels and pollen tube growth. The Plant Journal 63(6): 1042-1053.##Zhou, W., Wu, J., Zheng, Q., Jiang, Y., Zhang, M. and Zhu, S. 2017.Genome-wide identification and comparative analysis of Alfin-like transcription factors in maize. Genes and Genomics 39(3): 261-275.